Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

Air-assisted intranasal instillation enhances adenoviral delivery to the olfactory epithelium and respiratory tract

Abstract

Intranasal instillation is used to deliver adenoviral vectors to the olfactory epithelium and respiratory tract. The success of this approach, however, has been tempered by inconsistent infectivity in both the epithelium and lungs. Infection of the epithelium may be hampered in part by the convoluted structure of the cavity, the presence of mucus or poor airflow in the posterior cavity. Delivery of adenovirus to the lungs can be uneven in the various lobes and distal bronchioles may be poorly infected. Current approaches to circumvent these issues rely principally on intubation or intratracheal instillation. Here we describe a technique that significantly improves adenoviral infectivity rates without requiring surgical intervention. We use compressed air to increase circulation of instilled adenovirus, resulting in enhanced infection in both the epithelium and lungs. This procedure is straightforward, simple to perform and requires no specialized equipment. In the epithelium, neurons and sustentacular cells are both labeled. In the lungs, all lobes can be infected, with penetration to the most distal bronchioles. The use of compressed air will likely also be useful for enhancing the distribution of other, desired agents within the epithelium, central nervous system and respiratory tract.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chesler AT, Zou DJ, Le Pichon CE, Peterlin ZA, Matthews GA, Pei X et al. A G protein/cAMP signal cascade is required for axonal convergence into olfactory glomeruli. Proc Natl Acad Sci USA 2007; 104: 1039–1044.

    Article  CAS  Google Scholar 

  2. Crystal RG, McElvaney NG, Rosenfeld MA, Chu CS, Mastrangeli A, Hay JG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 1994; 8: 42–51.

    Article  CAS  PubMed  Google Scholar 

  3. Damjanovic D, Zhang X, Mu J, Medina MF, Xing Z . Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector. Genet Vaccines Ther 2008; 6: 5.

    Article  PubMed  Google Scholar 

  4. Danielyan L, Schafer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T et al. Intranasal delivery of cells to the brain. Eur J Cell Biol 2009; 88: 315–324.

    Article  CAS  Google Scholar 

  5. Dhuria SV, Hanson LR, Frey II WH . Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. J Pharm Sci 2009; 98: 2501–2515.

    Article  CAS  Google Scholar 

  6. Holtmaat AJ, Hermens WT, Sonnemans MA, Giger RJ, Van Leeuwen FW, Kaplitt MG et al. Adenoviral vector-mediated expression of B-50/GAP-43 induces alterations in the membrane organization of olfactory axon terminals in vivo. J Neurosci 1997; 17: 6575–6586.

    Article  CAS  Google Scholar 

  7. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S . Functional expression of a mammalian odorant receptor. Science 1998; 279: 237–242.

    Article  CAS  Google Scholar 

  8. Dhuria SV, Hanson LR, Frey II WH . Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 2010; 99: 1654–1673.

    Article  CAS  Google Scholar 

  9. Bridle BW, Boudreau JE, Lichty BD, Brunelliere J, Stephenson K, Koshy S et al. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17: 1814–1821.

    Article  CAS  PubMed  Google Scholar 

  10. Mathison S, Nagilla R, Kompella UB . Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target 1998; 5: 415–441.

    Article  CAS  Google Scholar 

  11. Zhao H, Otaki JM, Firestein S . Adenovirus-mediated gene transfer in olfactory neurons in vivo. J Neurobiol 1996; 30: 521–530.

    Article  CAS  Google Scholar 

  12. Ganguly S, Moolchandani V, Roche JA, Shapiro PS, Somaraju S, Eddington ND et al. Phospholipid-induced in vivo particle migration to enhance pulmonary deposition. J Aerosol Med Pulm Drug Deliv 2008; 21: 343–350.

    Article  CAS  Google Scholar 

  13. Holtmaat AJ, Hermens WT, Oestreicher AB, Gispen WH, Kaplitt MG, Verhaagen J . Efficient adenoviral vector-directed expression of a foreign gene to neurons and sustentacular cells in the mouse olfactory neuroepithelium. Brain Res Mol Brain Res 1996; 41: 148–156.

    Article  CAS  Google Scholar 

  14. DuPage M, Dooley AL, Jacks T . Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 2009; 4: 1064–1072.

    Article  CAS  PubMed  Google Scholar 

  15. Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 2000; 55: 24–35.

    Article  CAS  Google Scholar 

  16. Sinn PL, Burnight ER, Hickey MA, Blissard GW, McCray Jr PB . Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer. J Virol 2005; 79: 12818–12827.

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez S, Sickles HM, Deleonardis C, Alcaraz A, Gridley T, Lin DM . Notch2 is required for maintaining sustentacular cell function in the adult mouse main olfactory epithelium. Dev Biol 2008; 314: 40–58.

    Article  CAS  Google Scholar 

  18. Suzuki Y, Takeda M . Keratins in the developing olfactory epithelia. Brain Res Dev Brain Res 1991; 59: 171–178.

    Article  CAS  Google Scholar 

  19. Margolis FL . Olfactory marker protein (OMP). Scand J Immunol Suppl 1982; 9: 181–199.

    Article  CAS  PubMed  Google Scholar 

  20. Southam DS, Dolovich M, O'Byrne PM, Inman MD . Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am J Physiol Lung Cell Mol Physiol 2002; 282: L833–L839.

    Article  CAS  Google Scholar 

  21. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  22. Fasbender A, Lee JH, Walters RW, Moninger TO, Zabner J, Welsh MJ . Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epithelia in vitro and in vivo. J Clin Invest 1998; 102: 184–193.

    Article  CAS  PubMed  Google Scholar 

  23. Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ . New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules 2009; 10: 243–249.

    Article  CAS  Google Scholar 

  24. Xenariou S, Griesenbach U, Liang HD, Zhu J, Farley R, Somerton L et al. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Therapy 2007; 14: 768–774.

    Article  CAS  Google Scholar 

  25. Brand K, Klocke R, Possling A, Paul D, Strauss M . Induction of apoptosis and G2/M arrest by infection with replication-deficient adenovirus at high multiplicity of infection. Gene Therapy 1999; 6: 1054–1063.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stephanie Yaszinski for assistance with perfusion and dissection of the lungs, and the Weiss lab for the Ad-cre virus. We thank the Roberson lab for use of the luminometer. DML was supported by NIH DC007489, AG033241 and the Alzheimer's Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Lin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gau, P., Rodriguez, S., De Leonardis, C. et al. Air-assisted intranasal instillation enhances adenoviral delivery to the olfactory epithelium and respiratory tract. Gene Ther 18, 432–436 (2011). https://doi.org/10.1038/gt.2010.153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.153

Keywords

This article is cited by

Search

Quick links