Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transient expression of OCT4 is sufficient to allow human keratinocytes to change their differentiation pathway

Abstract

In this study, we describe a simple system in which human keratinocytes can be redirected to an alternative differentiation pathway. We transiently transfected freshly isolated human skin keratinocytes with the single transcription factor OCT4. Within 2 days these cells displayed expression of endogenous embryonic genes and showed reduced genomic methylation. More importantly, these cells could be specifically converted into neuronal and contractile mesenchymal cell types. Redirected differentiation was confirmed by expression of neuronal and mesenchymal cell mRNA and protein, and through a functional assay in which the newly differentiated mesenchymal cells contracted collagen gels as efficiently as authentic myofibroblasts. Thus, to generate patient-specific cells for therapeutic purposes, it may not be necessary to completely reprogram somatic cells into induced pluripotent stem cells before altering their differentiation and grafting them into new tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao R, Daley GQ . From fibroblasts to iPS cells: induced pluripotency by defined factors. J Cell Biochem 2008; 105: 949–955.

    Article  CAS  Google Scholar 

  3. Yamanaka S . Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 2008; 41 (Suppl 1): 51–56.

    Google Scholar 

  4. Hanna J, Wernig M, Markoulaki S, Sun C-W, Meissner A, Cassady JP et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318: 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  5. Park I-H, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451: 141–146.

    Article  CAS  Google Scholar 

  6. Okita K, Ichisaka T, Yamanaka S . Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317.

    Article  CAS  PubMed  Google Scholar 

  7. Amabile G, Meissner A . Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 2009; 15: 59–68.

    Article  CAS  Google Scholar 

  8. Okita K, Hong H, Takahashi K, Yamanaka S . Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 2010; 5: 418–428.

    Article  CAS  Google Scholar 

  9. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotech 2008; 26: 1276–1284.

    Article  CAS  Google Scholar 

  10. Liang L, Bickenbach JR . Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells 2002; 20: 21–31.

    Article  PubMed  Google Scholar 

  11. Schnerch A, Cerdan C, Bhatia M . Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men. Stem Cells 2010; 28: 419–430.

    PubMed  Google Scholar 

  12. Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 2009; 27: 353–360.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 834–835.

    Article  Google Scholar 

  14. Grinnell KL, Yang B, Eckert RL, Bickenbach JR . De-differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct-4. J Invest Dermatol 2007; 127: 372–380.

    Article  CAS  PubMed  Google Scholar 

  15. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L . Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27: 275–280.

    Article  CAS  PubMed  Google Scholar 

  16. Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH . Calcium regulation of growth and differentiation in mouse epidermal cells in culture. Cell 1980; 19: 245–254.

    Article  CAS  PubMed  Google Scholar 

  17. Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest 2006; 116: 3139–3149.

    Article  CAS  PubMed  Google Scholar 

  18. Lau HK . Regulation of proteolytic enzymes and inhibitors in two smooth muscle cell phenotypes. Cardiovasc Res 1999; 43: 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  19. Scholer H, Ruppert S, Suzuki N, Chowdhury K, Gruss P . New type of POU domain in germ line-specific protein Oct-4. Nature 1990; 344: 435–439.

    Article  CAS  PubMed  Google Scholar 

  20. Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P . Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 1990; 9: 2185–2195.

    Article  CAS  PubMed  Google Scholar 

  21. Ovitt C, Scholer H . The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod 1998; 4: 1021–1031.

    Article  CAS  Google Scholar 

  22. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R . Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003; 17: 126–140.

    Article  CAS  PubMed  Google Scholar 

  23. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 13: 631–642.

    Article  Google Scholar 

  24. Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 2005; 25: 2475–2485.

    Article  CAS  PubMed  Google Scholar 

  25. Rodda D, Chew J, Lim L, Loh Y, Wang B, Ng H et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 24731–24737.

    Article  CAS  Google Scholar 

  26. Varas F, Stadtfeld M, de Andres-Aguayo L, Maherali N, di Tullio A, Pantano L et al. Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells 2009; 27: 300–306.

    Article  CAS  PubMed  Google Scholar 

  27. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G . Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 2009; 27: 543–549.

    Article  CAS  PubMed  Google Scholar 

  28. Yusa K, Rad R, Takeda J, Bradley A . Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 2009; 6: 363–369.

    Article  CAS  PubMed  Google Scholar 

  29. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K . Induced pluripotent stem cells generated without viral integration. Science 2008; 322: 945–949.

    Article  CAS  PubMed  Google Scholar 

  30. Wong CJ, Casper RF, Rogers IM . Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Exp Cell Res 2010; 316: 927–939.

    Article  CAS  Google Scholar 

  31. Halprin KM . Epidermal ‘turnover time’—a re-examination. Br J Dermatol 1972; 86: 14–19.

    Article  CAS  PubMed  Google Scholar 

  32. Webb A, Kaur P . Epidermal stem cells. Front Biosci 2006; 11: 1031–1041.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang Y, Henderson D, Blackstad M, Chen A, Miller R, Verfaillie C . Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 2003; 100: 11854–11860.

    Article  CAS  PubMed  Google Scholar 

  34. Torrado M, Lopez E, Centeno A, Medrano C, Castro-Beiras A, Mikhailov AT . Myocardin mRNA is augmented in the failing myocardium: expression profiling in the porcine model and human dilated cardiomyopathy. J Mol Med 2003; 81: 566–577.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Bickenbach lab for helpful discussion, Matthew Fitzgerald and Dr Frederick Domann for assistance with the bisulfite technique and members of the UI Flow Cytometry Core. This research was funded in part by grants from the National Institutes of Health to JRB (R21AR053936 and R01AR053619) and by a grant from the Maryland Stem Cell Research Fund to RLE and JRB (MSCRFII-0178-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Bickenbach.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racila, D., Winter, M., Said, M. et al. Transient expression of OCT4 is sufficient to allow human keratinocytes to change their differentiation pathway. Gene Ther 18, 294–303 (2011). https://doi.org/10.1038/gt.2010.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.148

Keywords

This article is cited by

Search

Quick links