Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of murine leukemia virus-based retroviral vectors with a minimum possibility of cis-activation

Subjects

Abstract

The possibility of insertional mutagenesis in retroviral gene therapy can be reduced by using a vector lacking the enhancer sequence present in the U3 of the long-terminal repeats. However, such vectors suffer from many pitfalls. We attempted to improve a murine leukemia virus-based retroviral vector containing the enhancer-free U3, first by making it easier to construct a producer line and then by introducing the cellular RPL10 promoter as an internal promoter. The reverse orientation of the expression cassette of the transgene was found to give higher transducing titer and higher-level gene expression. The deletion analysis revealed that the 54-bp-long sequence of U3 (34 and 20 bp present at 5′ and 3′ extreme ends, respectively) was sufficient for the functions of retroviral vectors. The data from the in vitro cell culture assay indicated that the final construct, ROK, containing all these features, had little cis-activation activity, even if it was placed right upstream from the RNA start site of the neighboring gene. Our data suggested that the newly developed vector might provide increased safety, while still producing high viral titer from a stable producer line and high-level gene expression in various target cells including human CD34+ stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Edelstein ML, Abedi MR, Wixon J, Edelstein RM . Gene therapy clinical trials worldwide 1989-2004-an overview. J Gene Med 2004; 6: 597–602.

    Article  Google Scholar 

  2. Uren A, Kool J, Berns A, van Lohuizen M . Retroviral insertional mutagenesis: past, present and future. Oncogene 2005; 24: 7656–7672.

    CAS  Article  Google Scholar 

  3. Stocking C, Bergholz U, Friel J, Klingler K, Wagener T, Starke C et al. Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors 1993; 8: 197–209.

    CAS  Article  Google Scholar 

  4. Cavazzana-Calvo M, Hacein-Bey S, Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669.

    CAS  Article  Google Scholar 

  5. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack M, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    CAS  Article  Google Scholar 

  6. Hacein-Bey-Abina S, Garrigue A, Wang G, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132.

    CAS  Article  Google Scholar 

  7. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    CAS  Article  Google Scholar 

  8. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    CAS  Article  Google Scholar 

  9. Recchia A, Mavilio F . Site-specific integration into the HUMAN genome: ready for clinical application? Rejuvenation Res 2006; 9: 446–449.

    CAS  Article  Google Scholar 

  10. Su K, Wang D, Ye J, Kim YC, Chow SA . Site-specific integration of retroviral DNA in human cells using fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc-finger protein E2C. Methods 2009; 47: 269–276.

    CAS  Article  Google Scholar 

  11. Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M et al. Resistance of mature T cells to oncogene transformation. Blood 2008; 112: 2278–2286.

    CAS  Article  Google Scholar 

  12. Sugimoto Y, Hrycyna CA, Aksentijevich II, Pastan II, Gottesman MM . Coexpression of a multidrug-resistance gene (MDR1) and herpes simplex virus thymidine kinase gene as part of a bicistronic messenger RNA in a retrovirus vector allows selective killing of MDR1-transduced cells. Clin Cancer Res 1995; 1: 447–457.

    CAS  PubMed  Google Scholar 

  13. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    CAS  Article  Google Scholar 

  14. Yu S, Ruden T, Kantoff P, Garber C, Seiberg M, Ruther U et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci 1986; 83: 3194–3198.

    CAS  Article  Google Scholar 

  15. Yee J, Moores J, Jolly D, Wolff J, Respess J, Friedmann T . Gene expression from transcriptionally disabled retroviral vectors. Proc Natl Acad Sci USA 1987; 84: 5197–5201.

    CAS  Article  Google Scholar 

  16. Schambach A, Mueller D, Galla M, Verstegen M, Wagemaker G, Loew R et al. Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Ther 2006; 13: 1524–1533.

    CAS  Article  Google Scholar 

  17. Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffner W . A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 1985; 41: 521–530.

    CAS  Article  Google Scholar 

  18. Moreau-Gachelin F, Ray D, de Both NJ, van der Feltz MJ, Tambourin P, Tavitian A . Spi-1 oncogene activation in Rauscher and Friend murine virus-induced acute erythroleukemias. Leukemia 1990; 4: 20–23.

    CAS  PubMed  Google Scholar 

  19. Prosch S, Stein J, Staak K, Liebenthal C, Volk HD, Kruger DH . Inactivation of the very strong HCMV immediate early promoter by DNA CpG methylation in vitro. Biol Chem Hoppe Seyler 1996; 377: 195–201.

    CAS  Article  Google Scholar 

  20. Emerman M, Temin HM . Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 1984; 39: 449–467.

    CAS  Article  Google Scholar 

  21. Moreno-Carranza B, Gentsch M, Stein S, Schambach A, Santilli G, Rudolf E et al. Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells. Gene Ther 2009; 16: 111–118.

    CAS  Article  Google Scholar 

  22. Hong Y, Yu SS, Kim JM, Lee K, Na YS, Whitley CB et al. Construction of a high efficiency retroviral vector for gene therapy of Hunter's syndrome. J Gene Med 2003; 5: 18–29.

    CAS  Article  Google Scholar 

  23. Yu S, Kim J, Kim S . High efficiency retroviral vectors that contain no viral coding sequences. Gene Ther 2000; 7: 794–804.

    Article  Google Scholar 

  24. Potter H, Weir L, Leder P . Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 1984; 81: 7161–7165.

    CAS  Article  Google Scholar 

  25. Hong Y, Yu SS, Yoon NK, Kang SJ, Lee JT, Kim S et al. Development of an in vitro cell culture assay system for measuring the activation of a neighbouring gene by the retroviral vector. J Gene Med 2008; 10: 847–854.

    CAS  Article  Google Scholar 

  26. Cooper S, Trinklein N, Anton E, Nguyen L, Myers R . Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res 2006; 16: 1–10.

    CAS  Article  Google Scholar 

  27. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 1995; 23: 628–633.

    CAS  Article  Google Scholar 

  28. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16: 718–725.

    CAS  Article  Google Scholar 

  29. Titeux M, Pendaries V, Zanta-Boussif MA, Decha A, Pironon N, Tonasso L et al. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther 2010; 18: 1509–1518.

    CAS  Article  Google Scholar 

  30. Zhen L, King A, Xiao Y, Chanock S, Orkin S, Dinauer M . Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci USA 1993; 90: 9832–9836.

    CAS  Article  Google Scholar 

  31. Bandyopadhyay P, Temin H . Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector. Mol Cell Biol 1984; 4: 749–754.

    CAS  Article  Google Scholar 

  32. Ishikawa H, Nakata K, Mawatari F, Ueki T, Tsuruta S, Ido A et al. Retrovirus-mediated gene therapy for hepatocellular carcinoma with reversely oriented therapeutic gene expression regulated by α-fetoprotein enhancer/promoter. Biochem Biophys Res Commun 2001; 287: 1034–1040.

    CAS  Article  Google Scholar 

  33. Kozak S, Kabat D . Ping-pong amplification of a retroviral vector achieves high-level gene expression: human growth hormone production. J Virol 1990; 64: 3500–3508.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramezani A, Hawley TS, Hawley RG . Combinatorial incorporation of enhancer-blocking components of the chicken beta-globin 5′HS4 and human T-cell receptor alpha/delta BEAD-1 insulators in self-inactivating retroviral vectors reduces their genotoxic potential. Stem Cells 2008; 26: 3257–3266.

    CAS  Article  Google Scholar 

  35. Gaspar H, Parsley K, Howe S, King D, Gilmour K, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    CAS  Article  Google Scholar 

  36. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    CAS  Article  Google Scholar 

  37. Kim S, Lee K, Kim M, Kang S, Joo C, Kim J et al. Factors affecting the performance of different long terminal repeats in the retroviral vector. Biochem Biophys Res Commun 2006; 343: 1017–1022.

    CAS  Article  Google Scholar 

  38. Naumann N, De Ravin S, Choi U, Moayeri M, Whiting-Theobald N, Linton G et al. Simian immunodeficiency virus lentivector corrects human X-linked chronic granulomatous disease in the NOD/SCID mouse xenograft. Gene Ther 2007; 14: 1513–1524.

    CAS  Article  Google Scholar 

  39. Kaneko K, Kobayashi H, Onodera O, Miyatake T, Tsuji S . Genomic organization of a cDNA (QM) demonstrating an altered mRNA level in nontumorigenic Wilms’ microcell hybrid cells and its localization to Xq28. Hum Mol Genet 1992; 1: 529–533.

    CAS  Article  Google Scholar 

  40. Loew R, Meyer Y, Kuehlcke K, Gama-Norton L, Wirth D, Hauser H et al. A new PG13-based packaging cell line for stable production of clinical-grade self-inactivating gamma-retroviral vectors using targeted integration. Gene Ther 2009; 17: 272–280.

    Article  Google Scholar 

  41. Yu S, Han E, Hong Y, Lee J, Kim S . Construction of a retroviral vector production system with the minimum possibility of a homologous recombination. Gene Ther 2003; 10: 706–711.

    CAS  Article  Google Scholar 

  42. Hong Y, Lee K, Yu SS, Kim S, Kim JG, Shin HY . Factors affecting retrovirus-mediated gene transfer to human CD34+ cells. J Gene Med 2004; 6: 724–733.

    CAS  Article  Google Scholar 

  43. Gorman C, Moffat L, Howard B . Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 1982; 2: 1044.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Kyungmi Koh, Jonghyun Choi, Hwajin Kong, Hyelim Cho and Hae-Sook Ahn for their assistance in cloning various cellular promoters and mutant forms of 3′LTR. This work was supported in part by the grant given to S Kim's university laboratory by Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology (#2010K000829), in which ViroMed Co., Ltd. is a participating company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kim.

Ethics declarations

Competing interests

Sunyoung Kim, Sujeong Kim and Ja Young Kim are employees of ViroMed Co., Ltd.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jang, J., Lee, JT., Lee, K. et al. Development of murine leukemia virus-based retroviral vectors with a minimum possibility of cis-activation. Gene Ther 18, 240–249 (2011). https://doi.org/10.1038/gt.2010.135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.135

Keywords

  • retroviral vector
  • insertional mutagenesis
  • murine leukemia virus
  • vector safety

Search

Quick links