Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Augmentation of adenovirus 5 vector-mediated gene transduction under physiological pH conditions by a chitosan/NaHCO3 solution

Abstract

Chitosan, a cationic polysaccharide, can enhance recombinant adenovirus vector (rAdv)-mediated gene transduction (AMGT) in cells that lack the rAdv receptor, coxsackie-adenovirus receptor (CAR). However, gene transduction using chitosan for such cell types has so far only been successful under non-physiological pH conditions as chitosan is insoluble under physiological pH conditions. Here we report that NaHCO3 can greatly improve the solubility of chitosan at physiological pH (pH 7.4). We show that this chitosan/NaHCO3 solution increases AMGT approximately 8–24-fold in several CAR-absent or CAR low-level-expressing cell lines from different species and tissue origins (for example, Chinese hamster ovary, B16, DC2.4 and RD cells). Chitosan/NaHCO3 also increases AMGT of CAR-positive cell lines 1.6–1.7-fold. The presence of fetal bovine serum during rAdv treatment and impurities in rAdv preparations did not adversely affect transduction efficiency. Moreover, chitosan/NaHCO3 promotes AMGT efficiency for murine melanoma B16 xenografted tumor cells in C57/BL6 mice. Our new protocol provides a CAR-independent, highly efficient and convenient technique to enhance AMGT both in vitro and in vivo under physiological pH conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shirakawa T . Clinical trial design for adenoviral gene therapy products. Drug News Perspect 2009; 22: 140–145.

    Article  CAS  Google Scholar 

  2. Shirakawa T . The current status of adenovirus-based cancer gene therapy. Mol Cells 2008; 25: 462–466.

    CAS  PubMed  Google Scholar 

  3. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  Google Scholar 

  4. Anders M, Vieth M, Röcken C, Ebert M, Pross M, Gretschel S et al. Loss of the coxsackie and adenovirus receptor contributes to gastric cancer progression. Br J Cancer 2009; 100: 352–359.

    Article  CAS  Google Scholar 

  5. O’Prey J, Wilkinson S, Ryan KM . Tumor antigen LRRC15 impedes adenoviral infection: implications for virus-based cancer therapy. J Virol 2008; 82: 5933–5939.

    Article  Google Scholar 

  6. Hochstein N, Webb D, Hösel M, Seidel W, Auerochs S, Doerfler W . Human CAR gene expression in nonpermissive hamster cells boosts entry of type 12 adenovirions and nuclear import of viral DNA. J Virol 2008; 82: 4159–4163.

    Article  CAS  Google Scholar 

  7. Sebestyen Z, de Vrij J, Magnusson M, Debets R, Willemsen R . An oncolytic adenovirus redirected with a tumor-specific T-cell receptor. Cancer Res 2007; 67: 11309–11316.

    Article  CAS  Google Scholar 

  8. Qian W, Liu J, Tong Y, Yan S, Yang C, Yang M et al. Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis. Leukemia 2008; 22: 361–369.

    Article  CAS  Google Scholar 

  9. Guse K, Ranki T, Ala-Opas M, Bono P, Särkioja M, Rajecki M et al. Treatment of metastatic renal cancer with capsid-modified oncolytic adenoviruses. Mol Cancer Ther 2007; 6: 2728–2736.

    Article  CAS  Google Scholar 

  10. Wohlfahrt ME, Beard BC, Lieber A, Kiem HP . A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL Leads to enhanced cancer cell killing in human glioblastoma models. Cancer Res 2007; 67: 8783–8790.

    Article  CAS  Google Scholar 

  11. Singh R, Tian B, Kostarelos K . Artificial envelopment of nonenveloped viruses: enhancing adenovirus tumor targeting in vivo. FASEB J 2008; 22: 3389–3402.

    Article  CAS  Google Scholar 

  12. Bonsted A, Engesaeter BØ, Høgset A, Maelandsmo GM, Prasmickaite L, Kaalhus O et al. Transgene expression is increased by photochemically mediated transduction of polycation-complexed adenoviruses. Gene Ther 2004; 11: 152–160.

    Article  CAS  Google Scholar 

  13. Price AR, Limberis MP, Wilson JM, Diamond SL . Pulmonary delivery of adenovirus vector formulated with dexamethasone-spermine facilitates homologous vector re-administration. Gene Ther 2007; 14: 1594–1604.

    Article  CAS  Google Scholar 

  14. Soenen SJ, Brisson AR, De Cuyper M . Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials 2009; 30: 3691–3701.

    Article  CAS  Google Scholar 

  15. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A . A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 2005; 11: 990–995.

    Article  CAS  Google Scholar 

  16. Croyle MA, Cheng X, Sandhu A, Wilson JM . Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol Ther 2001; 4: 22–28.

    Article  CAS  Google Scholar 

  17. Kawamata Y, Nagayama Y, Nakao K, Mizuguchi H, Hayakawa T, Sato T et al. Receptor-independent augmentation of adenovirus-mediated gene transfer with chitosan in vitro. Biomaterials 2002; 23: 4573–4579.

    Article  CAS  Google Scholar 

  18. Romoren K, Pedersen S, Smistad G, Evensen O, Thu BJ . The influence of formulation variables on in vitro transfection efficiency and physicochemical properties of chitosan-based polyplexes. Int J Pharm 2003; 261: 115–127.

    Article  CAS  Google Scholar 

  19. Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT et al. Improved chitosan mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 2004; 11: 1441–1452.

    Article  Google Scholar 

  20. Richardson SC, Kolbe HV, Duncan R . Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 1999; 178: 231–243.

    Article  CAS  Google Scholar 

  21. Rao SB, Sharma CP . Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 1997; 34: 21–28.

    Article  CAS  Google Scholar 

  22. Morimoto M, Saimoto H, Usui H, Okamoto Y, Minami S, Shigemasa Y . Biological activities of carbohydrate-branched chitosan derivatives. Biomacromolecules 2001; 2: 1133–1136.

    Article  CAS  Google Scholar 

  23. Kean T, Roth S, Thanou M . Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Rel 2005; 103: 643–653.

    Article  CAS  Google Scholar 

  24. Germershaus O, Mao SR, Sitterberg J, Bakowsky U, Kissel T . Gene delivery using chitosan, trimethyl chitosan, or polyethylenglycolgraft- trimethyl chitosan block copolymers: establishment of structure activity relationships in vitro. J Control Rel 2008; 125: 145–154.

    Article  CAS  Google Scholar 

  25. Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G . Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 2002; 23: 153–159.

    Article  CAS  Google Scholar 

  26. Jiang X, Dai H, Leong KW, Goh SH, Mao HQ, Yang YY . Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J Gene Med 2006; 8: 477–487.

    Article  CAS  Google Scholar 

  27. Zhang YQ, Chen JJ, Zhang YD, Pan YF, Zhao JF, Ren LF et al. A novel PEGylation of chitosan nanoparticles for gene delivery. Biotechnol Appl Biochem 2007; 46: 197–204.

    Article  CAS  Google Scholar 

  28. Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J et al. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjugate Chem 2005; 16: 785–792.

    Article  CAS  Google Scholar 

  29. Mishra S, Webster P, Davis ME . PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004; 83: 97–111.

    Article  CAS  Google Scholar 

  30. Strand SP, Issa MM, Christensen BE, Vårum KM, Artursson P . Tailoring of chitosans for gene delivery: novel self-branched glycosylated chitosan oligomers with improved functional properties. Biomacromolecules 2008; 9: 3268–3276.

    Article  CAS  Google Scholar 

  31. Mizuguchi H, Hayakawa T . Enhanced antitumor effect and reduced vector dissemination with fiber-modified adenovirus vectors expressing herpes simplex virus thymidine kinase. Cancer Gene Ther 2002; 9: 236–242.

    Article  CAS  Google Scholar 

  32. Loré K, Adams WC, Havenga MJ, Precopio ML, Holterman L, Goudsmit J et al. Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses. J Immunol 2007; 179: 1721–1729.

    Article  Google Scholar 

  33. Reagan KJ, Goldberg B, Crowell RL . Altered receptor specificity of coxsackievirus B3 after growth in rhabdomyosarcoma cells. J Virol 1984; 49: 635–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Niu G, Xiong Z, Cheng Z, Cai W, Gambhir SS, Xing L et al. In vivo bioluminescence tumor imaging of RGD peptide-modified adenoviral vector encoding firefly luciferase reporter gene. Mol Imaging Biol 2007; 9: 126–134.

    Article  Google Scholar 

  35. Wu JC, Sundaresan G, Iyer M, Gambhir SS . Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 2001; 4: 297–306.

    Article  CAS  Google Scholar 

  36. Alemany R . Cancer selective adenoviruses. Mol Aspects Med 2007; 28: 42–58.

    Article  CAS  Google Scholar 

  37. Lee TW, Matthews DA, Blair GE . Novel molecular approaches to cystic fibrosis gene therapy. Biochem J 2005; 387 (Part 1): 1–15.

    Article  CAS  Google Scholar 

  38. Descamps D, Benihoud K . Two key challenges for effective adenovirus-mediated liver gene therapy: innate immune responses and hepatocyte-specific transduction. Curr Gene Ther 2009; 9: 115–127.

    Article  CAS  Google Scholar 

  39. Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF . Dendritic cell-based cancer gene therapy. Hum Gene Ther 2009; 20: 1106–1118.

    Article  CAS  Google Scholar 

  40. Muzzarelli C, Tosi G, Francescangeli O, Muzzarelli RA . Alkaline chitosan solutions. Carbohydr Res 2003; 338: 2247–2255.

    Article  CAS  Google Scholar 

  41. Senel S, McClure SJ . Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 2004; 56: 1467–1480.

    Article  CAS  Google Scholar 

  42. Kuge H, Ohashi K, Yokoyama T, Kanehiro H, Hisanaga M, Koyama F et al. Genetic modification of hepatocytes towards hepatocyte transplantation and liver tissue engineering. Cell Transplant 2006; 15: 1–12.

    Article  Google Scholar 

  43. Di Nicola M, Carlo-Stella C, Milanesi M, Magni M, Longoni P, Mortarini R et al. Large-scale feasibility of gene transduction into human CD34+ cell-derived dendritic cells by adenoviral/polycation complex. Br J Haematol 2000; 111: 344–350.

    Article  CAS  Google Scholar 

  44. Bourbeau D, Lavoie G, Nalbantoglu J, Massie B . Suicide gene therapy with an adenovirus expressing the fusion gene CD::UPRT in human glioblastomas: different sensitivities correlate with p53 status. J Gene Med 2004; 6: 1320–1332.

    Article  CAS  Google Scholar 

  45. Teramoto S, Ito H, Ouchi Y . Variables affecting the transduction efficiency of adenovirus vectors in bovine aortic endothelial cells. Thromb Res 1999; 93: 35–42.

    Article  CAS  Google Scholar 

  46. Xiang YZ, Feng ZH, Zhang J, Liao YL, Yu CJ, Yi WJ et al. Linear cyclen-based polyamine as a novel and efficient reagent in gene delivery. Org Biomol Chem 2010; 8: 640–647.

    Article  CAS  Google Scholar 

  47. Germershaus O, Merdan T, Bakowsky U, Behe M, Kissel T . Trastuzumab- polyethylenimine—polyethylene glycol conjugates for targeting Her2-expressing tumors. Bioconjug Chem 2006; 17: 1190–1199.

    Article  CAS  Google Scholar 

  48. Miyake S, Makimura M, Kanegae Y, Harada S, Sato Y, Takamori K et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA 1996; 93: 1320–1324.

    Article  CAS  Google Scholar 

  49. Yao H, Ng SS, Tucker WO, Tsang YK, Man K, Wang XM et al. The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Biomaterials 2009; 30: 5793–5803.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by an intramural grant of the Institute of Pathogen Biology, Chinese Academy of Medical Sciences (2006IPB10). We thank Prof. Dehai Liang for assistance in the particle size and zeta potential measurement studies and Prof. Zhendong Zhao for providing the DC2.4 cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, H., Lei, X., Qin, L. et al. Augmentation of adenovirus 5 vector-mediated gene transduction under physiological pH conditions by a chitosan/NaHCO3 solution. Gene Ther 18, 232–239 (2011). https://doi.org/10.1038/gt.2010.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.129

Keywords

This article is cited by

Search

Quick links