Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches

Abstract

In the last two decades, remarkable advances have been made in the development of technologies used to engineer new aptamers and ribozymes. This has encouraged interest among researchers who seek to create new types of gene-control systems that can be made to respond specifically to small-molecule signals. Validation of the fact that RNA molecules can exhibit the characteristics needed to serve as precision genetic switches has come from the discovery of numerous classes of natural ligand-sensing RNAs called riboswitches. Although a great deal of progress has been made toward engineering useful designer riboswitches, considerable advances are needed before the performance characteristics of these RNAs match those of protein systems that have been co-opted to regulate gene expression. In this review, we will evaluate the potential for engineered RNAs to regulate gene expression and lay out possible paths to designer riboswitches based on currently available technologies. Furthermore, we will discuss some technical advances that would empower RNA engineers who seek to make routine the production of designer riboswitches that can function in eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gold L, Polisky B, Uhlenbeck O, Yarus M . Diversity of oligonucleotide functions. Annu Rev Biochem 1995; 64: 763–797.

    Article  CAS  PubMed  Google Scholar 

  2. Osborne SE, Ellington AD . Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 1997; 97: 349–370.

    Article  CAS  PubMed  Google Scholar 

  3. Wilson DS, Szostak JW . In vitro selection of functional nucleic acids. Annu Rev Biochem 1999; 68: 611–647.

    Article  CAS  PubMed  Google Scholar 

  4. Breaker RR . Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 2002; 13: 31–39.

    Article  CAS  PubMed  Google Scholar 

  5. Silverman SK . Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 2003; 9: 377–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breaker RR . Natural and engineered nucleic acids as tools to explore biology. Nature 2004; 432: 838–845.

    Article  CAS  PubMed  Google Scholar 

  7. Davidson EA, Ellington AD . Engineering regulatory RNAs. Trends Biotechnol 2005; 23: 109–112.

    Article  CAS  PubMed  Google Scholar 

  8. Isaacs FJ, Dwyer DJ, Collins JJ . RNA synthetic biology. Nat Biotechnol 2006; 24: 545–554.

    Article  CAS  PubMed  Google Scholar 

  9. Bauer G, Suess B . Engineered riboswitches as novel tools in molecular biology. J Biotechnol 2006; 124: 4–11.

    Article  CAS  PubMed  Google Scholar 

  10. Gallivan JP . Toward reprogramming bacteria with small molecules and RNA. Curr Opin Chem Biol 2007; 11: 612–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Win MN, Smolke CD . RNA as a versatile and powerful platform for engineering genetic regulatory tools. Biotechnol Genet Eng Rev 2007; 24: 311–346.

    Article  CAS  PubMed  Google Scholar 

  12. Ellington A . What's so great about RNA? ACS Chem Biol 2007; 2: 445–448.

    Article  CAS  PubMed  Google Scholar 

  13. Doudna JA, Lorsch JR . Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 2005; 12: 395–402.

    Article  CAS  PubMed  Google Scholar 

  14. Ptashne M, Gann A . Genes & Signals. CSHL Press: Cold Spring Harbor, New York, 2002.

    Google Scholar 

  15. Terpe K . Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2006; 72: 211–222.

    Article  CAS  PubMed  Google Scholar 

  16. Toniatti C, Bujard H, Cortese R, Ciliberto G . Gene therapy progress and prospects: transcription regulatory systems. Gene Therapy 2004; 11: 649–657.

    Article  CAS  PubMed  Google Scholar 

  17. Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF et al. Regulatable gene therapy expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12: 189–211.

    Article  CAS  PubMed  Google Scholar 

  18. Moore I, Samalova M, Kurup S . Transactivated and chemically inducible gene expression in plants. Plant J 2006; 45: 651–683.

    Article  CAS  PubMed  Google Scholar 

  19. Phan TT, Schumann W . Development of a glycine-inducible expression system for Bacillus subtilis. J Biotechnol 2007; 128: 486–499.

    Article  CAS  PubMed  Google Scholar 

  20. Dugas DV, Bartel B . MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 2004; 7: 512–520.

    Article  CAS  PubMed  Google Scholar 

  21. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    Article  CAS  PubMed  Google Scholar 

  22. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  PubMed  Google Scholar 

  24. Rana TM . Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007; 8: 23–36.

    Article  CAS  PubMed  Google Scholar 

  25. Tang J, Breaker RR . Rational design of allosteric ribozymes. Chem Biol 1997; 4: 453–459.

    Article  CAS  PubMed  Google Scholar 

  26. Soukup GA, Breaker RR . Engineering precision RNA molecular switches. Proc Natl Acad Sci USA 1999; 96: 3584–3589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaeger L, Chworos A . The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 2006; 16: 531–543.

    Article  CAS  PubMed  Google Scholar 

  28. Koizumi M, Soukup GA, Kerr JNQ, Breaker RR . Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat Struct Biol 1999; 6: 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  29. Soukup GA, DeRose EC, Koizumi M, Breaker RR . Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 2001; 7: 524–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seetharaman S, Zivarts M, Sudarsan N, Breaker RR . Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat Biotechnol 2001; 19: 336–341.

    Article  CAS  PubMed  Google Scholar 

  31. Hesselberth JR, Robertson MP, Knudsen SM, Ellington AD . Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal Biochem 2003; 312: 106–112.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson KM, Syrett HA, Knudsen SM, Ellington AD . Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2002; 2: 21–33.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Werstuck G, Green MR . Controlling gene expression in living cells through small molecule-RNA interactions. Science 1998; 282: 296–298.

    Article  CAS  PubMed  Google Scholar 

  34. Grate D, Wilson C . Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg Med Chem 2001; 9: 2565–2570.

    Article  CAS  PubMed  Google Scholar 

  35. Mandal M, Breaker RR . Gene regulation by riboswitches. Nat Rev Mol Cell Biol 2004; 5: 451–463.

    Article  CAS  PubMed  Google Scholar 

  36. Winkler WC, Breaker RR . Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 2005; 59: 487–517.

    Article  CAS  PubMed  Google Scholar 

  37. Coppins RL, Hall KB, Groisman EA . The intricate world of riboswitches. Curr Opin Microbiol 2007; 10: 176–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barrick JE, Breaker RR . The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 2007; 8: R239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nahvi A, Sudarsan N, Ebert MS, Zoy X, Brown KL, Breaker RR . Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  40. Stoddard CD, Batey RT . Mix-and-match riboswitches. ACS Chem Biol 2006; 1: 751–754.

    Article  CAS  PubMed  Google Scholar 

  41. Breaker RR . Complex riboswitches. Science 2008; 319: 1795–1797.

    Article  CAS  PubMed  Google Scholar 

  42. Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 2006; 314: 300–304.

    Article  CAS  PubMed  Google Scholar 

  43. Welz R, Breaker RR . Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. RNA 2007; 13: 573–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004; 306: 275–279.

    Article  CAS  PubMed  Google Scholar 

  45. Jose AM, Soukup GA, Breaker RR . Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res 2001; 29: 1631–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yarnell WS, Roberts JW . Mechanism of intrinsic transcription termination and antitermination. Science 1999; 284: 611–615.

    Article  CAS  PubMed  Google Scholar 

  47. Gusarov I, Nudler E . The mechanism of intrinsic transcription termination. Mol Cell 1999; 3: 495–504.

    Article  CAS  PubMed  Google Scholar 

  48. Wickiser JK, Winkler WC, Breaker RR, Crothers DM . The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 2005; 18: 49–60.

    Article  CAS  PubMed  Google Scholar 

  49. Wickiser JK, Cheah MT, Breaker RR, Crothers DM . The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 2005; 44: 13404–13414.

    Article  CAS  PubMed  Google Scholar 

  50. Nou XW, Kadner RJ . Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 2000; 97: 7190–7195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Winkler W, Nahvi A, Breaker RR . Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002; 419: 952–956.

    Article  CAS  PubMed  Google Scholar 

  52. Fuchs RT, Grundy FJ, Henkin TM . S-adnosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA. Proc Natl Acad Sci USA 2007; 104: 4876–4880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS . Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res 2004; 32: 3340–3353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR . Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004; 428: 281–286.

    Article  CAS  PubMed  Google Scholar 

  55. Klein DJ, Ferré-D'Amaré AR . Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 2006; 313: 1752–1756.

    Article  CAS  PubMed  Google Scholar 

  56. Cochrane JC, Lipchock SV, Strobel SA . Structural investigation of the glmS ribozyme bound to its catalytic cofactor. Chem Biol 2007; 14: 97–105.

    Article  CAS  PubMed  Google Scholar 

  57. Collins JA, Irnov I, Baker S, Winkler WC . Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev 200; 21: 3356–3368.

    Article  CAS  Google Scholar 

  58. Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111: 747–756.

    Article  CAS  PubMed  Google Scholar 

  59. Sudarsan N, Barrick JE, Breaker RR . Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 2003; 9: 644–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, Nakai S et al. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett 2003; 555: 516–520.

    Article  CAS  PubMed  Google Scholar 

  61. Cheah MT, Wachter A, Sudarsan N, Breaker RR . Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 2007; 447: 497–500.

    Article  CAS  PubMed  Google Scholar 

  62. Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR . Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 2007; 19: 3437–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bocobza S, Adato A, Mandel T, Shapira M, Nudler E, Aharoni A . Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 2007; 21: 2874–2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Croft MT, Moulin M, Webb ME, Smith AG . Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci USA 2007; 104: 20770–20775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Woodson SA . Structure and assembly of group I introns. Curr Opin Struct Biol 2005; 15: 324–330.

    Article  CAS  PubMed  Google Scholar 

  66. Harvey I, Garneau P, Pelletier J . Inhibition of translation by RNA-small molecule interactions. RNA 2002; 8: 452–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buskirk AR, Landrigan A, Liu DR . Engineering a ligand-dependent RNA transcriptional activator. Chem Biol 2004; 11: 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  68. Weigand JE, Sanchez M, Gunnesch EB, Zeiher S, Schroeder R, Suess B . Screening for engineered neomycin riboswitches that control translation initiation. RNA 2008; 14: 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weigand JE, Suess B . Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res 2007; 35: 4179–4185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Desai SK, Gallivan JP . Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc 2004; 126: 13247–13254.

    Article  CAS  PubMed  Google Scholar 

  71. Koizumi M, Soukup GA, Kerr JN, Breaker RR . Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat Struct Biol 1999; 6: 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  72. Soukup GA, Emilsson GA, Breaker RR . Altering molecular recognition of RNA aptamers by allosteric selection. J Mol Biol 2000; 298: 623–632.

    Article  CAS  PubMed  Google Scholar 

  73. Zivarts M, Liu Y, Breaker RR . Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res 2005; 33: 622–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Link KH, Guo L, Ames TD, Yen L, Mulligan RC, Breaker RR . Engineering high-speed allosteric hammerhead ribozymes. Biol Chem 2007; 388: 776–786.

    Article  CAS  Google Scholar 

  75. Roth A, Breaker RR . Selection in vitro of allosteric ribozymes. Methods Mol Biol 2004; 252: 145–164.

    CAS  PubMed  Google Scholar 

  76. Nutiu R, Li YF . In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed Engl 2005; 44: 1061–1065.

    Article  CAS  PubMed  Google Scholar 

  77. Morse DP . Direct selection of RNA beacon aptamers. Biochem Biophys Res Commun 2007; 359: 94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Suess B, Weigand JE . Engineered riboswitches. RNA Biol 2008; 5: 24–29.

    Article  CAS  PubMed  Google Scholar 

  79. Wieland M, Hartig J . Artificial riboswitches: synthetic mRNA-based regulators of gene expression. Chembiochemistry 2008; 9: 1873–1878.

    Article  CAS  Google Scholar 

  80. Sachs AB, Sarnow P, Hentze MW . Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 1997; 98: 831–838.

    Article  Google Scholar 

  81. Hanson S, Berthelot K, Fink B, McCarthy JEG, Suess B . Tetracycline-aptamer-mediated translational regulation in yeast. Mol Microbiol 2003; 49: 1627–1637.

    Article  CAS  PubMed  Google Scholar 

  82. Hanson S, Bauer G, Fink B, Suess B . Molecular analysis of a synthetic tetracycline-binding riboswitch. RNA 2005; 11: 503–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaberdin VR, Bläsi U . Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 2006; 30: 967–979.

    Article  CAS  PubMed  Google Scholar 

  84. Kim D-S, Gusti V, Pillai SG, Gaur RK . An artificial riboswitch for controlling pre-mRNA splicing. RNA 2005; 11: 1667–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gusti V, Kim DS, Gaur RK . Sequestering of the 3′ splice site in a theophylline-responsive riboswitch allows ligand-dependent control of alternative splicing. Oligonucleotides 2008; 18: 93–99.

    Article  CAS  PubMed  Google Scholar 

  86. Soukup GA, Breaker RR . Relationship between internucleotide linkage geometry and the stability of RNA. RNA 1999; 5: 1308–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rieder R, Lang K, Graber D, Micura R . Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. Chembiochemistry 2007; 8: 896–902.

    Article  CAS  Google Scholar 

  88. Wang JX, Breaker RR . Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol 2008; 86: 157–168.

    Article  CAS  PubMed  Google Scholar 

  89. Tomšič J, McDaniel BA, Grundy FJ, Henkin TM . Natural variability in S-adenoslymethionine (SAM)-dependent riboswitches: S-box elements in Bacillus subtilis exhibit differential sensitivity to SAM in vivo and in vitro. J Bacteriol 2008; 190: 823–833.

    Article  PubMed  CAS  Google Scholar 

  90. Lynch SA, Desai SK, Sajja HK, Gallivan JP . A high-throughput screen for synthetic riboswitches reveals mechanistic insight into their function. Chem Biol 2007; 14: 173–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Topp S, Gallivan JP . Guiding bacteria with small molecules and RNA. J Am Chem Soc 2007; 129: 6807–6811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Topp S, Gallivan JP . Random walks to synthetic riboswitches—a high-throughput selection based on cell motility. Chembiochemistry 2008; 9: 210–213.

    Article  CAS  Google Scholar 

  93. Cochrane JC, Strobel SA . Catalytic strategies of self-cleaving ribozymes. Acc Chem Res 2008; 41: 1027–1035.

    Article  CAS  PubMed  Google Scholar 

  94. Khvorova A, Lescoute A, Westhof E, Jayasena SD . Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 2003; 10: 708–712.

    Article  CAS  PubMed  Google Scholar 

  95. De la Pena M, Gago S, Flores R . Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 2003; 22: 5561–5570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shepotinovskaya IV, Uhlenbeck OC . Catalytic diversity of extended hammerhead ribozymes. Biochemistry 2008; 47: 7034–7042.

    Article  CAS  PubMed  Google Scholar 

  97. Yen L, Svendsen J, Lee JS, Gray JT, Magnier M, Baba T et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 2004; 431: 471–476.

    Article  CAS  PubMed  Google Scholar 

  98. Yen L, Magnier M, Weissleder R, Stockwell BR, Mulligan RC . Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. RNA 2006; 12: 797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Martick M, Horan LH, Noller HF, Scott WG . A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA. Nature 2008; 454: 899–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kertsburg A, Soukup GA . A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res 2002; 30: 4599–4606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hall B, Hesselberth JR, Ellington AD . Computational selection of nucleic acid biosensors via a slip structure model. Biosens Bioelectron 2007; 22: 1939–1947.

    Article  CAS  PubMed  Google Scholar 

  102. Win MN, Smolke CD . A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA 2007; 104: 14283–14288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Win MN, Smolke CD . Higher-order cellular information processing with synthetic RNA devices. Science 2008; 322: 456–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wieland M, Hartig J . Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl 2008; 47: 2604–2607.

    Article  CAS  PubMed  Google Scholar 

  105. Topp A, Gallivan JP . Riboswitches in unexpected places—a synthetic riboswitch in a protein coding region. RNA 14: 2498–2503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ogawa A, Maeda M . An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochemistry 2008; 9: 206–209.

    Article  CAS  Google Scholar 

  107. Ogawa A, Maeda M . Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors. Bioorg Med Chem Lett 2007; 17: 3156–3160.

    Article  CAS  PubMed  Google Scholar 

  108. Agop-Nersesian C, Pfahler J, Lanzer M, Meissnerr M . Functional expression of ribozymes in Apicomplexa: towards exogenous control of gene expression by inducible RNA-cleavage. Int J Parasitol 2008; 38: 673–681.

    Article  CAS  PubMed  Google Scholar 

  109. An C, Trinh VB, Yokobayashi Y . Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA 2006; 12: 710–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tuleuova N, An C, Ramanculov E, Revzin A, Yokobayashi Y . Modulating endogenous gene expression of mammalian cells via RNA-small molecule interaction. Biochem Biophys Res Commun 2008; 376: 169–173.

    Article  CAS  PubMed  Google Scholar 

  111. Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR . 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 2005; 11: 774–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Trotochaud AE, Wassarman KM . A highly conserved 6S RNA structure is required for regulation of transcription. Nat Struct Mol Biol 2005; 12: 313–319.

    Article  CAS  PubMed  Google Scholar 

  113. Allen TA, Von Kaenel S, Goodrich JA, Jugel JF . The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 2004; 11: 816–821.

    Article  CAS  PubMed  Google Scholar 

  114. Espinosa CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA . B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 2004; 11: 822–829.

    Article  CAS  Google Scholar 

  115. Barrandon C, Spiluttini B, Bensaude O . Non-coding RNAs regulating the transcriptional machinery. Biol Cell 2008; 100: 83–95.

    Article  CAS  PubMed  Google Scholar 

  116. Gottesman S . Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 2005; 21: 399–404.

    Article  CAS  PubMed  Google Scholar 

  117. Amaral PP, Dinger ME, Mercer TR, Mattick JS . The eukaryotic genome as an RNA machine. Science 2008; 319: 1787–1789.

    Article  CAS  PubMed  Google Scholar 

  118. Buskirk AR, Kehayova PD, Landrigan A, Liu DR . In vivo evolution of an RNA-based transcriptional activator. Chem Biol 2003; 10: 533–540.

    Article  CAS  PubMed  Google Scholar 

  119. Grate D, Wilson C . Laser-mediated, site-specific inactivation of RNA transcripts. Proc Natl Acad Sci USA 1999; 96: 6131–6136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nomura Y, Yokobayashi Y . Reengineering a natural riboswitch by dual genetic selection. J Am Chem Soc 2007; 129: 13814–13815.

    Article  CAS  PubMed  Google Scholar 

  121. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR . Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 2003; 113: 577–586.

    Article  CAS  PubMed  Google Scholar 

  122. Mandal M, Breaker RR . Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 2004; 11: 29–35.

    Article  CAS  PubMed  Google Scholar 

  123. Rentmeister A, Mayer G, Kuhn K, Famulok M . Conformational changes in the expression domain of the Escherichia coli thiM riboswitch. Nucleic Acids Res 2007; 35: 3713–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Canny MD, Jucker FM, Kellogg E, Khvorova A, Jayasena SD, Pardi A . Fast cleavage kinetics of a natural hammerhead ribozyme. J Am Chem Soc 2004; 126: 10848–10849.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Breaker laboratory for helpful discussions. This work was supported by the Howard Hughes Medical Institute and by grants from the NSF and the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R R Breaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, K., Breaker, R. Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther 16, 1189–1201 (2009). https://doi.org/10.1038/gt.2009.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.81

Keywords

This article is cited by

Search

Quick links