Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ad5/3-9HIF-Δ24-VEGFR-1-Ig, an infectivity enhanced, dual-targeted and antiangiogenic oncolytic adenovirus for kidney cancer treatment

Abstract

Despite good safety data in clinical trials, oncolytic adenoviruses have not been efficient enough to make them a viable treatment alternative for cancers. As more potent viruses are being made, transcriptional and transductional targeting to tumor tissues becomes increasingly appealing. To improve antitumor efficacy, oncolytic adenoviruses can be armed with therapeutic transgenes, such as the antiangiogenic soluble vascular endothelial growth factor receptor 1-Ig fusion protein. We hypothesized that an infectivity enhanced, targeted, vascular endothelial growth factor receptor 1-Ig armed oncolytic adenovirus would exhibit improved specificity and antitumor effect in murine kidney cancer models. Two hypoxia inducible factor-sensitive promoters were evaluated for renal cancer specificity using a novel in vivo dual luciferase-imaging system. Earlier data had shown usefulness of the 5/3-serotype chimera capsid modification for kidney cancer. Therefore, we constructed Ad5/3-9HIF-Δ24-VEGFR-1-Ig, which showed good specificity and oncolytic effect on renal cancer cells in vitro and resulted in antitumor efficacy in a subcutaneous in vivo model, in which vascular endothelial growth factor receptor 1-Ig expression and a concurrent antiangiogenic effect were confirmed. In an intraperitoneally disseminated kidney cancer model, significantly enhanced survival was observed when compared with control viruses. These results suggest that a targeted, antiangiogenic, oncolytic adenovirus might be a valuable agent for testing in kidney cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  2. Vogelzang NJ, Stadler WM . Kidney cancer. Lancet 1998; 352: 1691–1696.

    Article  CAS  PubMed  Google Scholar 

  3. Coppin C, Porzsolt F, Awa A, Kumpf J, Coldman A, Wilt T . Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev 2005; 25: CD001425.

    Google Scholar 

  4. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349: 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanerva A, Hemminki A . Adenoviruses for treatment of cancer. Ann Med 2005; 37: 33–43.

    Article  CAS  PubMed  Google Scholar 

  6. Ribacka C, Hemminki A . Virotherapy as an approach against cancer stem cells. Curr Gene Ther 2008; 8: 88–96.

    Article  CAS  PubMed  Google Scholar 

  7. Liu TC, Kirn D . Gene therapy progress and prospects cancer: oncolytic viruses. Gene Therapy 2008; 15: 877–884.

    Article  CAS  PubMed  Google Scholar 

  8. Alemany R . Cancer selective adenoviruses. Mol Aspects Med 2007; 28: 42–58.

    Article  CAS  PubMed  Google Scholar 

  9. Yu W, Fang H . Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7: 141–148.

    Article  PubMed  Google Scholar 

  10. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  11. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  12. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  13. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  14. Sherr CJ . Cancer cell cycles. Science 1996; 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  15. Bauerschmitz GJ, Guse K, Kanerva A, Menzel A, Herrmann I, Desmond RA et al. Triple-targeted oncolytic adenoviruses featuring the cox2 promoter, E1A transcomplementation, and serotype chimerism for enhanced selectivity for ovarian cancer cells. Mol Ther 2006; 14: 164–174.

    Article  CAS  PubMed  Google Scholar 

  16. Cuevas Y, Hernandez-Alcoceba R, Aragones J, Naranjo-Suarez S, Castellanos MC, Esteban MA et al. Specific oncolytic effect of a new hypoxia-inducible factor-dependent replicative adenovirus on von Hippel–Lindau-defective renal cell carcinomas. Cancer Res 2003; 63: 6877–6884.

    CAS  PubMed  Google Scholar 

  17. Vaupel P, Kallinowski F, Okunieff P . Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49: 6449–6465.

    CAS  PubMed  Google Scholar 

  18. Kim WY, Kaelin WG . Role of VHL gene mutation in human cancer. J Clin Oncol 2004; 22: 4991–5004.

    Article  CAS  PubMed  Google Scholar 

  19. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8: 275–280.

    CAS  PubMed  Google Scholar 

  20. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ranki T, Kanerva A, Ristimaki A, Hakkarainen T, Sarkioja M, Kangasniemi L et al. A heparan sulfate-targeted conditionally replicative adenovirus, Ad5.pk7-Delta24, for the treatment of advanced breast cancer. Gene Therapy 2007; 14: 58–67.

    Article  CAS  PubMed  Google Scholar 

  22. Guse K, Ranki T, Ala-Opas M, Bono P, Sarkioja M, Rajecki M et al. Treatment of metastatic renal cancer with capsid-modified oncolytic adenoviruses. Mol Cancer Ther 2007; 6: 2728–2736.

    Article  CAS  PubMed  Google Scholar 

  23. Haviv YS, Blackwell JL, Kanerva A, Nagi P, Krasnykh V, Dmitriev I et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res 2002; 62: 4273–4281.

    CAS  PubMed  Google Scholar 

  24. Fukata S, Inoue K, Kamada M, Kawada C, Furihata M, Ohtsuki Y et al. Levels of angiogenesis and expression of angiogenesis-related genes are prognostic for organ-specific metastasis of renal cell carcinoma. Cancer 2005; 103: 931–942.

    Article  CAS  PubMed  Google Scholar 

  25. Nicol D, Hii SI, Walsh M, Teh B, Thompson L, Kennett C et al. Vascular endothelial growth factor expression is increased in renal cell carcinoma. J Urol 1997; 157: 1482–1486.

    Article  CAS  PubMed  Google Scholar 

  26. Ferrara N . Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999; 56: 794–814.

    Article  CAS  PubMed  Google Scholar 

  27. Kendall RL, Wang G, Thomas KA . Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226: 324–328.

    Article  CAS  PubMed  Google Scholar 

  28. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 1998; 95: 11709–11714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  30. Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 1998; 95: 8795–8800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahasreshti PJ, Navarro JG, Kataram M, Wang MH, Carey D, Siegal GP et al. Adenovirus-mediated soluble FLT-1 gene therapy for ovarian carcinoma. Clin Cancer Res 2001; 7: 2057–2066.

    CAS  PubMed  Google Scholar 

  32. Yang B, Cao DJ, Sainz I, Colman RW, Guo YL . Different roles of ERK and p38 MAP kinases during tube formation from endothelial cells cultured in 3-dimensional collagen matrices. J Cell Physiol 2004; 200: 360–369.

    Article  CAS  PubMed  Google Scholar 

  33. Gerber HP, Dixit V, Ferrara N . Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998; 273: 13313–13316.

    Article  CAS  PubMed  Google Scholar 

  34. Casado E, Gomez-Navarro J, Yamamoto M, Adachi Y, Coolidge CJ, Arafat WO et al. Strategies to accomplish targeted expression of transgenes in ovarian cancer for molecular therapeutic applications. Clin Cancer Res 2001; 7: 2496–2504.

    CAS  PubMed  Google Scholar 

  35. Barker SD, Coolidge CJ, Kanerva A, Hakkarainen T, Yamamoto M, Liu B et al. The secretory leukoprotease inhibitor (SLPI) promoter for ovarian cancer gene therapy. J Gene Med 2003; 5: 300–310.

    Article  CAS  PubMed  Google Scholar 

  36. Hawkins LK, Johnson L, Bauzon M, Nye JA, Castro D, Kitzes GA et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19 K region. Gene Ther 2001; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  37. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A . Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–579.

    Article  CAS  PubMed  Google Scholar 

  38. Calvani M, Rapisarda A, Uranchimeg B, Shoemaker RH, Melillo G . Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 2006; 107: 2705–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heldin CH, Rubin K, Pietras K, Ostman A . High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 2004; 4: 806–813.

    Article  CAS  PubMed  Google Scholar 

  40. Mahasreshti PJ, Kataram M, Wang MH, Stockard CR, Grizzle WE, Carey D et al. Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity. Clin Cancer Res 2003; 9: 2701–2710.

    CAS  PubMed  Google Scholar 

  41. Kanerva A, Bauerschmitz GJ, Yamamoto M, Lam JT, Alvarez RD, Siegal GP et al. A cyclooxygenase-2 promoter-based conditionally replicating adenovirus with enhanced infectivity for treatment of ovarian adenocarcinoma. Gene Therapy 2004; 11: 552–559.

    Article  CAS  PubMed  Google Scholar 

  42. Raki M, Hakkarainen T, Bauerschmitz GJ, Sarkioja M, Desmond RA, Kanerva A et al. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Therapy 2007; 14: 1380–1388.

    Article  CAS  PubMed  Google Scholar 

  43. Riely GJ, Miller VA . Vascular endothelial growth factor trap in non small cell lung cancer. Clin Cancer Res 2007; 13: s4623–s4627.

    Article  PubMed  Google Scholar 

  44. Ranki T, Sarkioja M, Hakkarainen T, von Smitten K, Kanerva A, Hemminki A . Systemic efficacy of oncolytic adenoviruses in imagable orthotopic models of hormone refractory metastatic breast cancer. Int J Cancer 2007; 121: 165–174.

    Article  CAS  PubMed  Google Scholar 

  45. Kangasniemi L, Kiviluoto T, Kanerva A, Raki M, Ranki T, Sarkioja M et al. Infectivity-enhanced adenoviruses deliver efficacy in clinical samples and orthotopic models of disseminated gastric cancer. Clin Cancer Res 2006; 12: 3137–3144.

    Article  CAS  PubMed  Google Scholar 

  46. Aragones J, Jones DR, Martin S, San Juan MA, Alfranca A, Vidal F et al. Evidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tension. J Biol Chem 2001; 276: 10548–10555.

    Article  CAS  PubMed  Google Scholar 

  47. Boast K, Binley K, Iqball S, Price T, Spearman H, Kingsman S et al. Characterization of physiologically regulated vectors for the treatment of ischemic disease. Hum Gene Ther 1999; 10: 2197–2208.

    Article  CAS  PubMed  Google Scholar 

  48. Hemminki A, Dmitriev I, Liu B, Desmond RA, Alemany R, Curiel DT . Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res 2001; 61: 6377–6381.

    CAS  PubMed  Google Scholar 

  49. Kanerva A, Zinn KR, Peng KW, Ranki T, Kangasniemi L, Chaudhuri TR et al. Noninvasive dual modality in vivo monitoring of the persistence and potency of a tumor targeted conditionally replicating adenovirus. Gene Therapy 2005; 12: 87–94.

    Article  CAS  PubMed  Google Scholar 

  50. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 2003; 8: 449–458.

    Article  CAS  PubMed  Google Scholar 

  51. Ostu N . A threshold selection method from gray-level histograms. IEEE Trans Sys, Man, Cyber 1979; 9: 62–66.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by European Research Council, EU FP6 APOTHERAPY and THERADPOX, HUCH Research Funds (EVO), Finnish Cancer Society, Sigrid Juselius Foundation, Academy of Finland, Biocentrum Helsinki, University of Helsinki, Helsinki Graduate School in Biotechnology and Molecular Biology, Helsinki Biomedical Graduate School, K Albin Johansson Foundation, Orion-Farmos research foundation and Finnish Cultural Foundation. We acknowledge Eerika Karli, Aila Karioja-Kallio, Ville Rantanen and Roxana Ola for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Hemminki.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guse, K., Diaconu, I., Rajecki, M. et al. Ad5/3-9HIF-Δ24-VEGFR-1-Ig, an infectivity enhanced, dual-targeted and antiangiogenic oncolytic adenovirus for kidney cancer treatment. Gene Ther 16, 1009–1020 (2009). https://doi.org/10.1038/gt.2009.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.56

Keywords

This article is cited by

Search

Quick links