Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Excision repair cross-complementing 1 expression protects against ischemic injury following middle cerebral artery occlusion in the rat brain

Abstract

To study the effects of excision repair cross-complementing 1 (ERCC1) on the pathophysiological process of brain ischemia, we examined the changes in ERCC1 expression, as well as the functional significance of ERCC1 in the rat brain following middle cerebral artery occlusion (MCAO). The results were as follows: (1) ERCC1 immunopositive cells were widely distributed in various brain regions. ERCC1 expression was localized to the nuclei of neurons and astrocytes. (2) ERCC1 expression, as determined by western blot, increased at 3 days, remaining until 14 days, in the ipsilateral cortex and striatum following MCAO. Immunohistochemical analysis demonstrated that ischemia induced increased ERCC1 expression within the periinfarct core, with increasingly less expression toward the core. (3) Knockdown of ERCC1 expression by intraventricular injection of antisense plasmids increased DNA damage and infarct volume in the ischemic brain. (4) ERCC1 overproduction, by injection of expression plasmids, significantly reduced infarct volume and the accumulation of DNA-damaged neurons. Taken together, these results indicate that both endogenous ERCC1 and exogenous ERCC1 have an important neuroprotective function in the brain. In addition, administration of ERCC1 to the brain could prove to be a successful strategy for neuronal protection against ischemic injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BER:

base excision repair

DSB:

DNA double-strand break

ERCC1:

excision repair cross-complementing 1

IP:

ischemic preconditioning

MCAO:

middle cerebral artery occlusion

NER:

nucleotide excision repair

PCNA:

proliferating cell nuclear antigen

SSB:

DNA single-strand break

References

  1. Liu PK, Hsu CY, Dizdaroglu M, Floyd RA, Kow YW, Karakaya A et al. Damage, repair, and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion. J Neurosci 1996; 16: 6795–6806.

    Article  CAS  Google Scholar 

  2. Nagayama T, Lan J, Henshall DC, Chen D, O’Horo C, Simon RP et al. Induction of oxidative DNA damage in the peri-infarct region after permanent focal cerebral ischemia. J Neurochem 2000; 75: 1716–1728.

    Article  CAS  Google Scholar 

  3. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR . DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA 1992; 89: 3030–3034.

    Article  CAS  Google Scholar 

  4. Payne CM, Bernstein C, Bernstein H . Apoptosis overview emphasizing the role of oxidative stress, DNA damage and signal-transduction pathways. Leuk Lymphoma 1995; 19: 43–93.

    Article  CAS  Google Scholar 

  5. Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA et al. Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 1997; 69: 232–245.

    Article  CAS  Google Scholar 

  6. Kawase M, Fujimura M, Morita-Fujimura Y, Chan PH . Reduction of apurinic/apyrimidinic endonuclease expression after transient global cerebral ischemia in rats: implication of the failure of DNA repair in neuronal apoptosis. Stroke 1999; 30: 441–448; discussion 449.

    Article  CAS  Google Scholar 

  7. Tomasevic G, Kamme F, Wieloch T . Changes in proliferating cell nuclear antigen, a protein involved in DNA repair, in vulnerable hippocampal neurons following global cerebral ischemia. Brain Res Mol Brain Res 1998; 60: 168–176.

    Article  CAS  Google Scholar 

  8. Imai H, Harland J, McCulloch J, Graham DI, Brown SM, Macrae IM . Specific expression of the cell cycle regulation proteins, GADD34 and PCNA, in the peri-infarct zone after focal cerebral ischaemia in the rat. Eur J Neurosci 2002; 15: 1929–1936.

    Article  CAS  Google Scholar 

  9. Li N, Wu H, Yang S, Chen D . Ischemic preconditioning induces XRCC1, DNA polymerase-beta, and DNA ligase III and correlates with enhanced base excision repair. DNA Repair (Amst) 2007.

  10. Chen D, Minami M, Henshall DC, Meller R, Kisby G, Simon RP . Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia. J Cereb Blood Flow Metab 2003; 23: 88–98.

    Article  CAS  Google Scholar 

  11. Lan J, Li W, Zhang F, Sun FY, Nagayama T, O’Horo C et al. Inducible repair of oxidative DNA lesions in the rat brain after transient focal ischemia and reperfusion. J Cereb Blood Flow Metab 2003; 23: 1324–1339.

    Article  CAS  Google Scholar 

  12. Sugawara T, Noshita N, Lewen A, Kim GW, Chan PH . Neuronal expression of the DNA repair protein Ku 70 after ischemic preconditioning corresponds to tolerance to global cerebral ischemia. Stroke 2001; 32: 2388–2393.

    Article  CAS  Google Scholar 

  13. Sun FY, Lin X, Mao LZ, Ge WH, Zhang LM, Huang YL et al. Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia. J Pineal Res 2002; 33: 48–56.

    Article  CAS  Google Scholar 

  14. Yang ZJ, Bao WL, Qiu MH, Zhang LM, Lu SD, Huang YL et al. Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia. J Neurosci Res 2002; 70: 140–149.

    Article  CAS  Google Scholar 

  15. Ling X, Zhang LM, Huang YL, Bao WL, Sun FY . Neuronal ERCC6 mRNA expression in rat brain induced by a transient focal cerebral ischemia. Zhongguo Yao Li Xue Bao 1999; 20: 15–20.

    CAS  PubMed  Google Scholar 

  16. Li W, Luo Y, Zhang F, Signore AP, Gobbel GT, Simon RP et al. Ischemic preconditioning in the rat brain enhances the repair of endogenous oxidative DNA damage by activating the base-excision repair pathway. J Cereb Blood Flow Metab 2006; 26: 181–198.

    Article  Google Scholar 

  17. De Laat WL, Jaspers NG, Hoeijmakers JH . Molecular mechanism of nucleotide excision repair. Genes Dev 1999; 13: 768–785.

    Article  CAS  Google Scholar 

  18. Murai M, Enokido Y, Inamura N, Yoshino M, Nakatsu Y, van der Horst GT et al. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. Proc Natl Acad Sci USA 2001; 98: 13379–13384.

    Article  CAS  Google Scholar 

  19. Wood RD, Mitchell M, Sgouros J, Lindahl T . Human DNA repair genes. Science 2001; 291: 1284–1289.

    Article  CAS  Google Scholar 

  20. Matsunaga T, Mu D, Park CH, Reardon JT, Sancar A . Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J Biol Chem 1995; 270: 20862–20869.

    Article  CAS  Google Scholar 

  21. Ferry KV, Hamilton TC, Johnson SW . Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem Pharmacol 2000; 60: 1305–1313.

    Article  CAS  Google Scholar 

  22. Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC . Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res 2003; 63: 1311–1316.

    CAS  PubMed  Google Scholar 

  23. Motycka TA, Bessho T, Post SM, Sung P, Tomkinson AE . Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52. J Biol Chem 2004; 279: 13634–13639.

    Article  CAS  Google Scholar 

  24. Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004; 24: 5776–5787.

    Article  CAS  Google Scholar 

  25. Kuraoka I, Kobertz WR, Ariza RR, Biggerstaff M, Essigmann JM, Wood RD . Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem 2000; 275: 26632–26636.

    Article  CAS  Google Scholar 

  26. Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM et al. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 2000; 28: 3771–3778.

    Article  CAS  Google Scholar 

  27. Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS . Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 2000; 19: 5552–5561.

    Article  CAS  Google Scholar 

  28. Schrader CE, Vardo J, Linehan E, Twarog MZ, Niedernhofer LJ, Hoeijmakers JH et al. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions. J Exp Med 2004; 200: 321–330.

    Article  CAS  Google Scholar 

  29. Selfridge J, Hsia KT, Redhead NJ, Melton DW . Correction of liver dysfunction in DNA repair-deficient mice with an ERCC1 transgene. Nucleic Acids Res 2001; 29: 4541–4550.

    Article  CAS  Google Scholar 

  30. Zou LL, Huang L, Hayes RL, Black C, Qiu YH, Perez-Polo JR et al. Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Therapy 1999; 6: 994–1005.

    Article  CAS  Google Scholar 

  31. Zhang R, Xue YY, Lu SD, Wang Y, Zhang LM, Huang YL et al. Bcl-2 enhances neurogenesis and inhibits apoptosis of newborn neurons in adult rat brain following a transient middle cerebral artery occlusion. Neurobiol Dis 2006; 24: 345–356.

    Article  CAS  Google Scholar 

  32. Wang YQ, Guo X, Qiu MH, Feng XY, Sun FY . VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res 2007; 85: 73–82.

    Article  CAS  Google Scholar 

  33. Longa EZ, Weinstein PR, Carlson S, Cummins R . Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84–91.

    Article  CAS  Google Scholar 

  34. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 2nd edn. Academic Press: Orlando, 1986.

    Google Scholar 

  35. Schmued LC, Hopkins KJ . Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 2000; 874: 123–130.

    Article  CAS  Google Scholar 

  36. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR . A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 1990; 10: 290–293.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Basic Research Program of China (nos. 2006CB504100 and 2006CB943702), National Natural Science Foundation of China (no. 30770660) and Shanghai Metropolitan Fund for Research and Development (nos. 04DZ14005 and 07DZ14005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F-Y Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, KY., Yang, SZ., Shen, DH. et al. Excision repair cross-complementing 1 expression protects against ischemic injury following middle cerebral artery occlusion in the rat brain. Gene Ther 16, 840–848 (2009). https://doi.org/10.1038/gt.2009.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.48

Keywords

Search

Quick links