Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibitory efficacy of hypoxia-inducible factor 1α short hairpin RNA plasmid DNA-loaded poly (D, L-lactide-co-glycolide) nanoparticles on choroidal neovascularization in a laser-induced rat model

Abstract

The aim of this study was to evaluate the possibility of poly (D, L-lactide-co-glycolide) nanoparticle (NPs) as a gene vector for functional plasmid DNA (pDNA) and to investigate its inhibitory efficacy on experimental choroidal neovascularization (CNV). We developed intravitreal administered, hypoxia-inducible factor 1α (HIF-1α) short hairpin RNA and green fluorescent protein (GFP) co-expressed pDNA-loaded NPs (pshHIF-1α NPs). CNV was induced by laser photocoagulation in 112 rats. The rats were then randomly assigned to be injected intravitreally with phosphate-buffered saline (PBS), blank NPs, naked pDNA, control pDNA NPs and pshHIF-1α NPs, respectively, and non-injection group was set as the control. Immunofluorescence staining, fluorescein fundus angiography and histologic analysis were performed to evaluate the inhibitory efficacy on CNV. The results showed that the expression of GFP preferentially localized in the retinal pigment epithelium cell layer and lasted for 4 weeks. The fluorescein leakage areas of CNV were significantly larger in the PBS, blank NPs, control pDNA NPs, non-injection group and naked pDNA group than in pshHIF-1α NPs group (P<0.01). The mean thickness of the CNV lesions in the intravitreally pshHIF-1α NPs-treated group was significantly smaller than other groups (P<0.01). No signs of functional or ultrastructural destruction in retina were detected. Therefore, pshHIF-1α NPs may act as a novel therapeutic option to transfer specific pDNA and inhibit the formation of experimental CNV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hyman LG, Lilienfeld AM, Ferris III FL, Fine SL . Senile macular degeneration: a case-control study. Am J Epidemiol 1983; 118: 213–227.

    Article  CAS  PubMed  Google Scholar 

  2. Macular Photocoagulation Study G. Argon laser photocoagulation for neovascular maculopathy: five-year results from randomized clinical trials. Arch Ophthalmol 1991; 109: 1109–1114.

    Article  Google Scholar 

  3. Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials—TAP report. Arch Ophthalmol 1999; 117: 1329–1345.

    Article  Google Scholar 

  4. Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 2002; 8: 119–126.

    CAS  PubMed  Google Scholar 

  5. Sheridan CM, Rice D, Hiscott PS, Wong D, Kent DL . The presence of AC133-positive cells suggests a possible role of endothelial progenitor cells in the formation of choroidal neovascularization. Invest Ophthalmol Vis Sci 2006; 47: 1642–1645.

    Article  PubMed  Google Scholar 

  6. Kent D, Sheridan C . Choroidal neovascularization: a wound healing perspective. Mol Vis 2003; 9: 747–755.

    CAS  PubMed  Google Scholar 

  7. Otani A, Takagi H, Oh H, Koyama S, Ogura Y, Matumura M et al. Vascular endothelial growth factor family and receptor expression in human choroidal neovascular membranes. Microvasc Res 2002; 64: 162–169.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara N, Damico L, Shams N, Lowman H, Kim R . Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006; 26: 859–870.

    Article  PubMed  Google Scholar 

  9. Kinose F, Roscilli G, Lamartina S, Anderson KD, Bonelli F, Spence SG et al. Inhibition of retinal and choroidal neovascularization by a novel KDR kinase inhibitor. Mol Vis 2005; 11: 366–373.

    CAS  PubMed  Google Scholar 

  10. Aiello LP . Angiogenic pathways in diabetic retinopathy. N Engl J Med 2005; 353: 839–841.

    Article  CAS  PubMed  Google Scholar 

  11. Schwesinger C, Yee C, Rohan RM, Joussen AM, Fernandez A, Meyer TN et al. Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 2001; 158: 1161–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song SJ, Chung H, Yu HG . Inhibitory effect of YC-1, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole, on experimental choroidal neovascularization in rat. Ophthalmic Res 2008; 40: 35–40.

    Article  PubMed  Google Scholar 

  13. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    Article  CAS  PubMed  Google Scholar 

  14. Arjamaa O, Nikinmaa M, Salminen A, Kaarniranta K . Regulatory role of HIF-1a in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev 2009; 8: 349–358.

    Article  CAS  PubMed  Google Scholar 

  15. Birch DG, Liang FQ . Age-related macular degeneration: a target for nanotechnology derived medicines. Int J Nanomedicine 2007; 2: 65–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riva CE, Cranstoun SD, Grunwald JE, Petrig BL . Choroidal blood flow in the foveal region of the human ocular fundus. Invest Ophthalmol Vis Sci 1994; 35: 4273–4281.

    CAS  PubMed  Google Scholar 

  17. Schlingemann RO . Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2004; 242: 91–101.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu J, Wang YS, Zhang J, Zhao W, Yang XM, Li X et al. Focal adhesion kinase signaling pathway participates in the formation of choroidal neovascularization and regulates the proliferation and migration of choroidal microvascular endothelial cells by acting through HIF-1 and VEGF expression in RPE cells. Exp Eye Res 2009; 88: 910–918.

    Article  CAS  PubMed  Google Scholar 

  19. Martin G, Schlunck G, Hansen LL, Agostini HT . Differential expression of angioregulatory factors in normal and CNV-derived human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 2004; 242: 321–326.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Zhang X, Hao X, Wang Y, Hui Y, Wang H et al. Rac1 activates HIF-1 in retinal pigment epithelium cells under hypoxia. Graefes Arch Clin Exp Ophthalmol 2009; 247: 633–639.

    Article  CAS  PubMed  Google Scholar 

  21. Kvanta A, Algvere PV, Berglin L, Seregard S . Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 1996; 37: 1929–1934.

    CAS  PubMed  Google Scholar 

  22. Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR . Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1996; 37: 855–868.

    CAS  PubMed  Google Scholar 

  23. Sheridan CM, Pate S, Hiscott P, Wong D, Pattwell DM, Kent D . Expression of hypoxia-inducible factor-1α and-2α in human choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol 2009; 247: 1361–1367.

    Article  CAS  PubMed  Google Scholar 

  24. Inoue Y, Yanagi Y, Matsuura K, Takahashi H, Tamaki Y, Araie M . Expression of hypoxia-inducible factor 1alpha and 2alpha in choroidal neovascular membranes associated with age-related macular degeneration. Br J Ophthalmol 2007; 91: 1720–1721.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wenger RH . Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002; 16: 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida D, Kim K, Noha M, Teramoto A . Hypoxia inducible factor 1-α regulates of platelet derived growth factor-β in human glioblastoma cells. J Neurooncol 2006; 76: 13–21.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao W, Wang YS, Hui YN, Zhu J, Zhang P, Li X et al. Inhibition of proliferation, migration and tube formation of choroidal microvascular endothelial cells by targeting HIF-1alpha with short hairpin RNA-expressing plasmid DNA in human RPE cells in a coculture system. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1413–1422.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang P, Wang Y, Hui Y, Hu D, Wang H, Zhou J et al. Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells. Ophthalmologica 2007; 221: 411–417.

    Article  CAS  PubMed  Google Scholar 

  29. Campochiaro PA . Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther 2006; 13: 559–562.

    Article  CAS  PubMed  Google Scholar 

  30. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003; 9: 210–216.

    CAS  PubMed  Google Scholar 

  31. Tolentino MJ, Brucker AJ, Fosnot J, Ying GS, Wu IH, Malik G et al. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina 2004; 24: 132–138.

    Article  PubMed  Google Scholar 

  32. Check E . A crucial test. Nat Med 2005; 11: 243–244.

    Article  CAS  PubMed  Google Scholar 

  33. Xia XB, Xiong SQ, Xu HZ, Jiang J, Li Y . Suppression of retinal neovascularization by shRNA targeting HIF-1alpha. Curr Eye Res 2008; 33: 892–902.

    Article  PubMed  Google Scholar 

  34. Jain RA, Rhodes CT, Railkar AM, Malick AW, Shah NH . Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Eur J Pharm Biopharm 2000; 50: 257–262.

    Article  CAS  PubMed  Google Scholar 

  35. Hyon SH . Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsei Med J 2000; 41: 720–734.

    Article  CAS  PubMed  Google Scholar 

  36. Duvvuri S, Janoria KG, Mitra AK . Development of a novel formulation containing poly (D, L-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA Gel for sustained delivery of ganciclovir. J Control Release 2005; 108: 282–293.

    Article  CAS  PubMed  Google Scholar 

  37. Hedley ML, Curley J, Urban R . Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med 1998; 4: 365–368.

    Article  CAS  PubMed  Google Scholar 

  38. Panyam J, Labhasetwar V . Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55: 329–347.

    Article  CAS  PubMed  Google Scholar 

  39. Giordano GG, Thomson RC, Ishaug SL, Mikos AG, Cumber S, Garcia CA et al. Retinal pigment epithelium cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1997; 34: 87–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kimura H, Ogura Y, Moritera T, Honda Y, Tabata Y, Ikada Y . In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release. Curr Eye Res 1994; 13: 353–360.

    Article  CAS  PubMed  Google Scholar 

  41. Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB . Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Therapy 2009; 16: 645–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bejjani RA, BenEzra D, Cohen H, Rieger J, Andrieu C, Jeanny JC et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005; 11: 124–132.

    CAS  PubMed  Google Scholar 

  43. Ogura Y, Kimura H . Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium. Surv Ophthalmol 1995; 39 (Suppl 1): S17–S24.

    Article  PubMed  Google Scholar 

  44. Xu J, Wang Y, Li Y, Yang X, Zhang P, Hou H et al. Inhibitory efficacy of intravitreal dexamethasone acetate-loaded PLGA nanoparticles on choroidal neovascularization in a laser-induced rat model. J Ocul Pharmacol Ther 2007; 23: 527–540.

    Article  CAS  PubMed  Google Scholar 

  45. Kwak N, Okamoto N, Wood JM, Campochiaro PA . VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 2000; 41: 3158–3164.

    CAS  PubMed  Google Scholar 

  46. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Therapy 2006; 13: 225–234.

    Article  CAS  PubMed  Google Scholar 

  47. Campa C, Kasman I, Ye W, Lee WP, Fuh G, Ferrara N . Effects of an anti-VEGF-A monoclonal antibody on laser-induced choroidal neovascularization in mice: optimizing methods to quantify vascular changes. Invest Ophthalmol Vis Sci 2008; 49: 1178–1183.

    Article  PubMed  Google Scholar 

  48. Grunwald JE, Metelitsina TI, Dupont JC, Ying GS, Maguire MG . Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci 2005; 46: 1033–1038.

    Article  PubMed  Google Scholar 

  49. Grunwald JE, Hariprasad SM, DuPont J, Maguire MG, Fine SL, Brucker AJ et al. Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 1998; 39: 385–390.

    CAS  PubMed  Google Scholar 

  50. Das A, McGuire PG . Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 2003; 22: 721–748.

    Article  CAS  PubMed  Google Scholar 

  51. Vinores SA, Xiao WH, Aslam S, Shen J, Oshima Y, Nambu H et al. Implication of the hypoxia response element of the Vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol 2006; 206: 749–758.

    Article  CAS  PubMed  Google Scholar 

  52. Yang XM, Wang YS, Zhang J, Li Y, Xu JF, Zhu J et al. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1{Alpha} and VEGF in laser-induced rat choroidal neovascularization. Invest Ophthalmol Vis Sci 2009; 50: 1873–1879.

    Article  PubMed  Google Scholar 

  53. Semenza GL, Wang GL . A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447–5454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guerrin M, Moukadiri H, Chollet P, Moro F, Dutt K, Malecaze F et al. Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J Cell Physiol 1995; 164: 385–394.

    Article  CAS  PubMed  Google Scholar 

  55. Hannon GJ, Rossi JJ . Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371–378.

    Article  CAS  PubMed  Google Scholar 

  56. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA . Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 1999; 13: 3191–3197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA . Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 2001; 98: 9742–9747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  59. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC . A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 5515–5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  61. Yu JY, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 6047–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng TL, Chang WT . Construction of simple and efficient DNA vector-based short hairpin RNA expression systems for specific gene silencing in mammalian cells. Methods Mol Biol 2007; 408: 223–241.

    Article  CAS  PubMed  Google Scholar 

  63. Wu MT, Wu RH, Hung CF, Cheng TL, Tsai WH, Chang WT . Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem Biophys Res Commun 2005; 330: 53–59.

    Article  CAS  PubMed  Google Scholar 

  64. Rao DD, Vorhies JS, Senzer N, Nemunaitis J . Sirna vs. shRNA: similarities and differences. Adv Drug Deliv Rev 2009; 61: 746–759.

    Article  CAS  PubMed  Google Scholar 

  65. McAnuff MA, Rettig GR, Rice KG . Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci 2007; 96: 2922–2930.

    Article  CAS  PubMed  Google Scholar 

  66. Wu L, Martinez-Castellanos MA, Quiroz-Mercado H, Arevalo JF, Berrocal MH, Farah ME et al. Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (Pacores). Graefes Arch Clin Exp Ophthalmol 2008; 246: 81–87.

    Article  CAS  PubMed  Google Scholar 

  67. Bartlett DW, Davis ME . Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 2006; 34: 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maliyekkel A, Davis BM, Roninson IB . Cell cycle arrest drastically extends the duration of gene silencing after transient expression of short hairpin RNA. Cell Cycle 2006; 5: 2390–2395.

    Article  CAS  PubMed  Google Scholar 

  69. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V . Rapid endo-lysosomal escape of poly(D, L-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002; 16: 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  70. Wattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M . Endosomes, lysosomes: their implication in gene transfer. Adv Drug Deliv Rev 2000; 41: 201–208.

    Article  CAS  PubMed  Google Scholar 

  71. Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, Sosnowski S et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 2000; 7: 1896–1905.

    Article  CAS  PubMed  Google Scholar 

  72. Bourges J-L, Gautier SE, Delie F, Bejjani RA, Jeanny J-C, Gurny R et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 2003; 44: 3562–3569.

    Article  PubMed  Google Scholar 

  73. Strauss O . The retinal pigment epithelium in visual function. Physiol Rev 2005; 85: 845–881.

    Article  CAS  PubMed  Google Scholar 

  74. Sarks JP, Sarks SH, Killingsworth MC . Morphology of early choroidal neovascularisation in age-related macular degeneration: correlation with activity. Eye 1997; 11: 515–522.

    Article  PubMed  Google Scholar 

  75. Aukunuru JV, Ayalasomayajula SP, Kompella UB . Nanoparticle formulation enhances the delivery and activity of a vascular endothelial growth factor antisense oligonucleotide in human retinal pigment epithelial cells. J Pharm Pharmacol 2003; 55: 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  76. Sakurai E, Ozeki H, Kunou N, Ogura Y . Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res 2001; 33: 31–36.

    Article  CAS  PubMed  Google Scholar 

  77. Murata N, Takashima Y, Toyoshima K, Yamamoto M, Okada H . Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice. J Control Release 2008; 126: 246–254.

    Article  CAS  PubMed  Google Scholar 

  78. Dunne M, Bibby DC, Jones JC, Cudmore S . Encapsulation of protamine sulphate compacted DNA in polylactide and polylactide-co-glycolide microparticles. J Control Release 2003; 92: 209–219.

    Article  CAS  PubMed  Google Scholar 

  79. Yasukawa T, Hoffmann S, Eichler W, Friedrichs U, Wang YS, Wiedemann P . Inhibition of experimental choroidal neovascularization in rats by an alpha(v)-integrin antagonist. Curr Eye Res 2004; 28: 359–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 30371516, No. 30672291) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (2004). The project was sponsored partly by the equipment donation from the Alexander Von Humboldt Foundation in Germany (to YSW, V8151/02085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-S Wang or H Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Wang, YS., Wu, H. et al. Inhibitory efficacy of hypoxia-inducible factor 1α short hairpin RNA plasmid DNA-loaded poly (D, L-lactide-co-glycolide) nanoparticles on choroidal neovascularization in a laser-induced rat model. Gene Ther 17, 338–351 (2010). https://doi.org/10.1038/gt.2009.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.158

Keywords

This article is cited by

Search

Quick links