Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell-specific nuclear import of plasmid DNA in smooth muscle requires tissue-specific transcription factors and DNA sequences

Abstract

Two shortcomings of nonviral gene therapy are a lack of tissue-specific targeting of vectors and low levels of gene transfer. Our laboratory has begun to address these limitations by designing plasmids that enter the nucleus of specific cell types in the absence of cell division, thereby enhancing expression in a controlled manner. We have shown that a 176 bp portion of the smooth muscle γ-actin (SMGA) promoter can mediate plasmid nuclear import specifically in smooth muscle cells (SMCs). Here, we demonstrate that the binding sites for serum response factor (SRF) and NKX3-1/3-2 within this DNA nuclear targeting sequence (DTS) are required for plasmid nuclear import. Knockdown of these factors with siRNA abrogates plasmid nuclear import, indicating that they are necessary cofactors. In addition, coinjection of recombinant SRF and Nkx3.2 with the vector in TC7 epithelial cells rescues import. Finally, we show that the SRF nuclear localization sequence (NLS) is required for vector nuclear import. We propose that SRF and NKX3-1/3-2 bind the SMGA DTS in the cytoplasm, thus coating the plasmid with NLSs that mediate translocation across the nuclear pore complex. This discovery could aid in the development of more efficient nonviral vectors for gene transfer to SMCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Capecchi MR . High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 1980; 22: 479–488.

    Article  CAS  Google Scholar 

  2. Graessman M, Menne J, Liebler M, Graeber I, Graessman A . Helper activity for gene expression, a novel function of the SV40 enhancer. Nucleic Acids Res 1989; 17: 6603–6612.

    Article  Google Scholar 

  3. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ . Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270: 18997–19007.

    Article  CAS  Google Scholar 

  4. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E . Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Therapy 2000; 7: 401–407.

    Article  CAS  Google Scholar 

  5. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.

    Article  CAS  Google Scholar 

  6. Barron LG, Szoka FC . The perplexing delivery mechanism of lipoplexes. In: Huang L, Hung M-C, Wagner E (eds). Nonviral Vectors for Gene Therapy. Academic Press: San Diego, 1999, pp 230–266.

    Google Scholar 

  7. Godbey WT, Barry MA, Saggau P, Wu KK, Mikos AG . Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J Biomed Mater Res 2000; 51: 321–328.

    Article  CAS  Google Scholar 

  8. Grosse S, Thevenot G, Monsigny M, Fajac I . Which mechanism for nuclear import of plasmid DNA complexed with polyethylenimine derivatives? J Gene Med 2006; 8: 845–851.

    Article  CAS  Google Scholar 

  9. Dean DA, Dean BS, Muller S, Smith LC . Sequence requirements for plasmid nuclear entry. Exp Cell Res 1999; 253: 713–722.

    Article  CAS  Google Scholar 

  10. Vacik J, Dean BS, Zimmer WE, Dean DA . Cell-specific nuclear import of plasmid DNA. Gene Therapy 1999; 6: 1006–1014.

    Article  CAS  Google Scholar 

  11. Dean BS, Byrd Jr JN, Dean DA . Nuclear targeting of plasmid DNA in human corneal cells. Curr Eye Res 1999; 19: 66–75.

    Article  CAS  Google Scholar 

  12. Dean DA . Import of plasmid DNA into the nucleus is sequence specific. Exp Cell Res 1997; 230: 293–302.

    Article  CAS  Google Scholar 

  13. Young JL, Byrd JN, Wyatt CR, Dean DA . Endothelial cell-specific plasmid nuclear import. Mol Biol Cell 1999; 10S: 443a.

    Google Scholar 

  14. Dowty ME, Williams P, Zhang G, Hagstrom JE, Wolff JA . Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci USA 1995; 92: 4572–4576.

    Article  CAS  Google Scholar 

  15. Wilson GL, Dean BS, Wang G, Dean DA . Nuclear import of plasmid DNA in digitonin-permeabilized cells requires both cytoplasmic factors and specific DNA sequences. J Biol Chem 1999; 274: 22025–22032.

    Article  CAS  Google Scholar 

  16. Mesika A, Grigoreva I, Zohar M, Reich Z . A regulated, NFkappaB-assisted import of plasmid DNA into mammalian cell nuclei. Mol Ther 2001; 3: 653–657.

    Article  CAS  Google Scholar 

  17. Vaysse L, Harbottle R, Bigger B, Bergau A, Tolmachov O, Coutelle C . Development of a self-assembling nuclear targeting vector system based on the tetracycline repressor protein. J Biol Chem 2004; 279: 5555–5564.

    Article  CAS  Google Scholar 

  18. Dean DA, Strong DD, Zimmer WE . Nuclear entry of nonviral vectors. Gene Therapy 2005; 12: 881–890.

    Article  CAS  Google Scholar 

  19. Gorlich D . Nuclear protein import. Curr Opin Cell Biol 1997; 9: 412–419.

    Article  CAS  Google Scholar 

  20. Moroianu J . Distinct nuclear import and export pathways mediated by members of the karyopherin beta family. J Cell Biochem 1998; 70: 231–239.

    Article  CAS  Google Scholar 

  21. Stoffler D, Fahrenkrog B, Aebi U . The nuclear pore complex: from molecular architecture to functional dynamics. Curr Opin Cell Biol 1999; 11: 391–401.

    Article  CAS  Google Scholar 

  22. Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE . The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-1, and serum response factor. J Biol Chem 2000; 275: 39061–39072.

    Article  CAS  Google Scholar 

  23. Kim D-W, Kempf H, Chen R, Lassar A . Characterization of Nkx3.2 DNA binding specificity and its requirement for somitic chondrogenesis. J Biol Chem 2003; 278: 27532–27539.

    Article  CAS  Google Scholar 

  24. Tanaka M, Kasahara H, Bartunkova S, Schinke M, Komuro I, Inagaki H et al. Vertebrate homologs of tinman and bagpipe: roles of the homeobox genes in cardiovascular development. Dev Genet 1998; 22: 239–249.

    Article  CAS  Google Scholar 

  25. Tanaka M, Lyons GE, Izumo S . Expression of the Nkx3.1 homobox gene during pre and postnatal development. Mech Dev 1999; 85: 179–182.

    Article  CAS  Google Scholar 

  26. Nishida W, Nakamura M, Mori S, Takahashi M, Ohkawa Y, Tadokoro S et al. A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes. J Biol Chem 2002; 277: 7308–7317.

    Article  CAS  Google Scholar 

  27. Dean DA, Vacik J, Dean BS, Zimmer WE . Cell-specific nuclear import of plasmids containing the smooth muscle gamma-actin promoter. Mol Biol Cell 1998; 9S: 188a.

    Google Scholar 

  28. Colin M, Moritz S, Fontanges P, Kornprobst M, Delouis C, Keller M et al. The nuclear pore complex is involved in nuclear transfer of plasmid DNA condensed with an oligolysine-RGD peptide containing nuclear localisation properties. Gene Therapy 2001; 8: 1643–1653.

    Article  CAS  Google Scholar 

  29. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinsky AG, Haggerty S et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 1992; 89: 6580–6584.

    Article  CAS  Google Scholar 

  30. Greber UF, Kasamatsu H . Nuclear targeting of SV40 and adenovirus. Trends Cell Biol 1996; 6: 189–195.

    Article  CAS  Google Scholar 

  31. Fritz JD, Herweijer H, Zhang G, Wolff JA . Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum Gene Ther 1996; 7: 1395–1404.

    Article  CAS  Google Scholar 

  32. Mesika A, Kiss V, Brumfeld V, Ghosh G, Reich Z . Enhanced intracellular mobility and nuclear accumulation of DNA plasmids associated with a karyophilic protein. Hum Gene Ther 2005; 16: 200–208.

    Article  CAS  Google Scholar 

  33. Branden LJ, Mohamed AJ, Smith CI . A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 1999; 17: 784–787.

    Article  CAS  Google Scholar 

  34. Cartier R, Reszka R . Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Therapy 2002; 9: 157–167.

    Article  CAS  Google Scholar 

  35. Rech J, Barlat I, Veyrune J, Vie A, Blanchard J . Nuclear import of serum response factor (SRF) requires a short amino-terminal nuclear localization sequence and is independent of the casein kinase II phosphorylation site. J Cell Sci 1994; 107: 3029–3036.

    CAS  PubMed  Google Scholar 

  36. Gauthier-Rouvière C, Vandromme M, Lautredou N, Cai QQ, Girard F, Fernandez A et al. The serum response factor nuclear localization signal: general implications for cyclic AMP-dependent protein kinase activity in control of nuclear localization. Mol Cell Biol 1995; 15: 433–444.

    Article  Google Scholar 

  37. Hessabi B, Ziegler P, Schmidt I, Hessabi C, Walther R . The nuclear localization signal (NLS) of PDX-1 is part of the homeodomain and represents a novel type of NLS. Eur J Biochem 1999; 263: 170–177.

    Article  CAS  Google Scholar 

  38. Young JL, Benoit JN, Dean DA . Effect of a DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature. Gene Therapy 2003; 10: 1465–1470.

    Article  CAS  Google Scholar 

  39. Gasiorowski JZ, Dean DA . Postmitotic nuclear retention of episomal plasmids is altered by DNA labeling and detection methods. Mol Ther 2005; 12: 460–467.

    Article  CAS  Google Scholar 

  40. Camoretti-Mercado B, Fernandes D, Dewundara S, Churchill J, Ma L, Kogut P et al. Inhibition of TGF beta-enhanced SRF-dependent transcription by SMAD7. J Biol Chem 2006; 281: 20383–20392.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank James DeGiulio, Erin Vaughan and Warren Zimmer for insightful discussions and technical advice. We also thank Andrew Lassar, Julian Solway and Warren Zimmer for the generous gifts of constructs. This work was supported in part by grants HL59956 and by a predoctoral fellowship from the American Heart Association, Greater Midwest Affiliate (AMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, A., Dean, D. Cell-specific nuclear import of plasmid DNA in smooth muscle requires tissue-specific transcription factors and DNA sequences. Gene Ther 15, 1107–1115 (2008). https://doi.org/10.1038/gt.2008.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.83

Keywords

This article is cited by

Search

Quick links