Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oxidative stress-inducible lentiviral vectors for gene therapy

Abstract

Oxidative stress is important in several pathologies, including cardiovascular diseases such as atherosclerosis and cardiac ischemia-reperfusion injury. An important mechanism for adaptation to oxidative stress is induction of genes through the antioxidant response element (ARE), which regulates the expression of antioxidant and cytoprotective genes via the transcription factor Nrf2 (nuclear factor E2-related factor 2). As Nrf2-regulated genes are induced during oxidant stress occurring, for example, in reperfusion after ischemia, we took a novel approach to exploit ARE for the development of oxidative stress-inducible gene therapy vectors. To this end, one, two or three ARE-containing regions from human NAD(P)H:quinone oxidoreductase-1, glutamate-cysteine ligase modifier subunit and mouse heme oxygenase-1 were cloned into a vector expressing luciferase under a minimal SV40 promoter. The construct, which was the most responsive to ARE-inducing agents, was chosen for further studies in which a lentiviral vector was produced for an efficient transfer to endothelial cells. Heme oxygenase-1 (HO-1), which has well-characterized anti-inflammatory properties, was used as the therapeutic transgene. In human endothelial cells, ARE-driven HO-1 overexpression inhibited nuclear factor-κB activation and subsequent vascular cell adhesion molecule-1 expression induced by tumor necrosis factor-α. We conclude that the ARE element is a promising alternative for the development of oxidative stress-inducible gene therapy vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Griendling KK, FitzGerald GA . Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 2003; 108: 1912–1916.

    Article  Google Scholar 

  2. Lefer DJ, Granger DN . Oxidative stress and cardiac disease. Am J Med 2000; 109: 315–323.

    Article  CAS  Google Scholar 

  3. Levonen AL, Vähäkangas E, Koponen JK, Yla-Herttuala S . Antioxidant gene therapy for cardiovascular disease: current status and future perspectives. Circulation (in press).

  4. Stocker R, Perrella MA . Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation 2006; 114: 2178–2189.

    Article  CAS  Google Scholar 

  5. Ryter SW, Alam J, Choi AM . Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86: 583–650.

    Article  CAS  Google Scholar 

  6. Alam J, Cook JL . Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 2003; 9: 2499–2511.

    Article  CAS  Google Scholar 

  7. Soares MP, Seldon MP, Gregoire IP, Vassilevskaia T, Berberat PO, Yu J et al. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol 2004; 172: 3553–3563.

    Article  CAS  Google Scholar 

  8. Seldon MP, Silva G, Pejanovic N, Larsen R, Gregoire IP, Filipe J et al. Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-{kappa}B RelA phosphorylation at serine 276. J Immunol 2007; 179: 7840–7851.

    Article  CAS  Google Scholar 

  9. Berens C, Hillen W . Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. Eur J Biochem 2003; 270: 3109–3121.

    Article  CAS  Google Scholar 

  10. Pachori AS, Melo LG, Hart ML, Noiseux N, Zhang L, Morello F et al. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury. Proc Natl Acad Sci USA 2004; 101: 12282–12287.

    Article  CAS  Google Scholar 

  11. Tang YL, Qian K, Zhang YC, Shen L, Phillips MI . A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo. J Cardiovasc Pharmacol Ther 2005; 10: 251–263.

    Article  CAS  Google Scholar 

  12. Nguyen T, Sherratt PJ, Pickett CB . Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003; 43: 233–260.

    Article  CAS  Google Scholar 

  13. Rushmore TH, Morton MR, Pickett CB . The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 1991; 266: 11632–11639.

    CAS  PubMed  Google Scholar 

  14. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236: 313–322.

    Article  CAS  Google Scholar 

  15. Zhang DD . Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 2006; 38: 769–789.

    Article  CAS  Google Scholar 

  16. Kannan S, Jaiswal AK . Low and high dose UVB regulation of transcription factor NF-E2-related factor 2. Cancer Res 2006; 66: 8421–8429.

    Article  CAS  Google Scholar 

  17. Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G et al. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 2004; 378: 373–382.

    Article  CAS  Google Scholar 

  18. Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ . Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem 1997; 272: 7445–7454.

    Article  CAS  Google Scholar 

  19. Wild AC, Moinova HR, Mulcahy RT . Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 1999; 274: 33627–33636.

    Article  CAS  Google Scholar 

  20. Inamdar NM, Ahn YI, Alam J . The heme-responsive element of the mouse heme oxygenase-1 gene is an extended AP-1 binding site that resembles the recognition sequences for MAF and NF-E2 transcription factors. Biochem Biophys Res Commun 1996; 221: 570–576.

    Article  CAS  Google Scholar 

  21. Li Y, Jaiswal AK . Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem 1992; 267: 15097–15104.

    CAS  PubMed  Google Scholar 

  22. Shibata T, Kondo M, Osawa T, Shibata N, Kobayashi M, Uchida K . 15-Deoxy-delta 12, 14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J Biol Chem 2002; 277: 10459–10466.

    Article  CAS  Google Scholar 

  23. Taba Y, Sasaguri T, Miyagi M, Abumiya T, Miwa Y, Ikeda T et al. Fluid shear stress induces lipocalin-type prostaglandin D(2) synthase expression in vascular endothelial cells. Circ Res 2000; 86: 967–973.

    Article  CAS  Google Scholar 

  24. Hosoya T, Maruyama A, Kang MI, Kawatani Y, Shibata T, Uchida K et al. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J Biol Chem 2005; 280: 27244–27250.

    Article  CAS  Google Scholar 

  25. Dulak J, Zagorska A, Wegiel B, Loboda A, Jozkowicz A . New strategies for cardiovascular gene therapy: regulatable pre-emptive expression of pro-angiogenic and antioxidant genes. Cell Biochem Biophys 2006; 44: 31–42.

    Article  CAS  Google Scholar 

  26. Stocker R, Keaney Jr JF . Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84: 1381–1478.

    Article  CAS  Google Scholar 

  27. Liu X, Pachori AS, Ward CA, Davis JP, Gnecchi M, Kong D et al. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function. FASEB J 2006; 20: 207–216.

    Article  CAS  Google Scholar 

  28. Liu X, Simpson JA, Brunt KR, Ward CA, Hall SR, Kinobe RT et al. Preemptive heme oxygenase-1 gene delivery reveals reduced mortality and preservation of left ventricular function 1 y after acute myocardial infarction. Am J Physiol Heart Circ Physiol 2007; 293: H48–H59.

    Article  CAS  Google Scholar 

  29. Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 2003; 278: 703–711.

    Article  CAS  Google Scholar 

  30. Chen XL, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 2006; 290: H1862–H1870.

    Article  CAS  Google Scholar 

  31. Levonen AL, Inkala M, Heikura T, Jauhiainen S, Jyrkkanen HK, Kansanen E et al. Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo. Arterioscler Thromb Vasc Biol 2007; 27: 741–747.

    Article  CAS  Google Scholar 

  32. Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84: 1086–1095.

    Article  CAS  Google Scholar 

  33. Bea F, Hudson FN, Chait A, Kavanagh TJ, Rosenfeld ME . Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res 2003; 92: 386–393.

    Article  CAS  Google Scholar 

  34. Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 2006; 20: 2624–2626.

    Article  CAS  Google Scholar 

  35. Kensler TW, Wakabayashi N, Biswal S . Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007; 47: 89–116.

    Article  CAS  Google Scholar 

  36. Erickson AM, Nevarea Z, Gipp JJ, Mulcahy RT . Identification of a variant antioxidant response element in the promoter of the human glutamate-cysteine ligase modifier subunit gene. Revision of the ARE consensus sequence. J Biol Chem 2002; 277: 30730–30737.

    Article  CAS  Google Scholar 

  37. Roy S, Khanna S, Bickerstaff AA, Subramanian SV, Atalay M, Bierl M et al. Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1). Circ Res 2003; 92: 264–271.

    Article  CAS  Google Scholar 

  38. Su H, Arakawa-Hoyt J, Kan YW . Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci USA 2002; 99: 9480–9485.

    Article  CAS  Google Scholar 

  39. Cernuda-Morollon E, Pineda-Molina E, Canada FJ, Perez-Sala D . 15-Deoxy-delta 12, 14-prostaglandin J2 inhibition of NF-kappaB-DNA binding through covalent modification of the p50 subunit. J Biol Chem 2001; 276: 35530–35536.

    Article  CAS  Google Scholar 

  40. Alam J, Den Z . Distal AP-1 binding sites mediate basal level enhancement and TPA induction of the mouse heme oxygenase-1 gene. J Biol Chem 1992; 267: 21894–21900.

    CAS  PubMed  Google Scholar 

  41. Keyse SM, Tyrrell RM . Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA 1989; 86: 99–103.

    Article  CAS  Google Scholar 

  42. Makinen PI, Koponen JK, Karkkainen AM, Malm TM, Pulkkinen KH, Koistinaho J et al. Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med 2006; 8: 433–441.

    Article  CAS  Google Scholar 

  43. Koponen JK, Kekarainen T, Heinonen SE, Laitinen A, Nystedt J, Laine J et al. Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 2007; 15: 2172–2177.

    Article  CAS  Google Scholar 

  44. Follenzi A, Naldini L . HIV-based vectors. Preparation and use. Methods Mol Med 2002; 69: 259–274.

    CAS  PubMed  Google Scholar 

  45. Levonen AL, Dickinson DA, Moellering DR, Mulcahy RT, Forman HJ, Darley-Usmar VM . Biphasic effects of 15-deoxy-delta(12, 14)-prostaglandin J(2) on glutathione induction and apoptosis in human endothelial cells. Arterioscler Thromb Vasc Biol 2001; 21: 1846–1851.

    Article  CAS  Google Scholar 

  46. Rosenthal N . Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol 1987; 152: 704–720.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Academy of Finland, the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation and the European Vascular Genomics Network (EVGN, LSHM-CT-2003-503254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ylä-Herttuala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurttila, H., Koponen, J., Kansanen, E. et al. Oxidative stress-inducible lentiviral vectors for gene therapy. Gene Ther 15, 1271–1279 (2008). https://doi.org/10.1038/gt.2008.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.75

Keywords

This article is cited by

Search

Quick links