Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination

Abstract

Immunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for ‘on-target’ DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Xu Z, Zan H, Pone EJ, Mai T, Casali P . Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 2012; 12: 517–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stavnezer J . Antibody class switching. Adv Immunol 1996; 61: 79–146.

    Article  CAS  PubMed  Google Scholar 

  3. Stavnezer J . Molecular processes that regulate class switching. Curr Top Microbiol Immunol 2000; 245: 127–168.

    CAS  PubMed  Google Scholar 

  4. Péron S, Laffleur B, Denis-Lagache N, Cook-Moreau J, Tinguely A, Delpy L et al. AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells. Science 2012; 336: 931–934.

    Article  PubMed  Google Scholar 

  5. Jung S, Siebenkotten G, Radbruch A . Frequency of immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes. J Exp Med 1994; 179: 2023–2026.

    Article  CAS  PubMed  Google Scholar 

  6. Bottaro A, Lansford R, Xu L, Zhang J, Rothman P, Alt FW . S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J 1994; 13: 665–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Bottaro A, Li S, Stewart V, Alt FW . A selective defect in IgG2b switching as a result of targeted mutation of the I gamma 2b promoter and exon. EMBO J 1993; 12: 3529–3537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harriman GR, Bradley A, Das S, Rogers-Fani P, Davis AC . IgA class switch in I alpha exon-deficient mice. Role of germline transcription in class switch recombination. J Clin Invest 1996; 97: 477–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW . Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003; 422: 726–730.

    Article  CAS  PubMed  Google Scholar 

  10. Bassing CH, Alt FW . The cellular response to general and programmed DNA double strand breaks. DNA Repair 2004; 3: 781–796.

    Article  CAS  PubMed  Google Scholar 

  11. Imai K, Slupphaug G, Lee W-I, Revy P, Nonoyama S, Catalan N et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 2003; 4: 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  12. Bardwell PD, Woo CJ, Wei K, Li Z, Martin A, Sack SZ et al. Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nat Immunol 2004; 5: 224–229.

    Article  CAS  PubMed  Google Scholar 

  13. Kingzette M, Spieker-Polet H, Yam PC, Zhai SK, Knight KL . Trans-chromosomal recombination within the Ig heavy chain switch region in B lymphocytes. Proc Natl Acad Sci USA 1998; 95: 11840–11845.

    Article  CAS  PubMed  Google Scholar 

  14. Reynaud S, Delpy L, Fleury L, Dougier H-L, Sirac C, Cogné M . Interallelic class switch recombination contributes significantly to class switching in mouse B cells. J Immunol 2005; 174: 6176–6183.

    Article  CAS  PubMed  Google Scholar 

  15. Dougier H-L, Reynaud S, Pinaud E, Carrion C, Delpy L, Cogné M . Interallelic class switch recombination can reverse allelic exclusion and allow trans-complementation of an IgH locus switching defect. Eur J Immunol 2006; 36: 2181–2191.

    Article  CAS  PubMed  Google Scholar 

  16. Guikema JEJ, Schrader CE, Leus NGJ, Ucher A, Linehan EK, Werling U et al. Reassessment of the role of Mut S homolog 5 in Ig class switch recombination shows lack of involvement in cis- and trans-switching. J Immunol 2008; 181: 8450–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vincent-Fabert C, Fiancette R, Pinaud E, Truffinet V, Cogné N, Cogné M et al. Genomic deletion of the whole IgH 3’ regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes. Blood 2010; 116: 1895–1898.

    Article  CAS  PubMed  Google Scholar 

  18. Rouaud P, Vincent-Fabert C, Saintamand A, Fiancette R, Marquet M, Robert I et al. The IgH 3’ regulatory region controls somatic hypermutation in germinal center B cells. J Exp Med 2013; 210: 1501–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pinaud E, Marquet M, Fiancette R, Péron S, Vincent-Fabert C, Denizot Y et al. The IgH locus 3’ regulatory region: pulling the strings from behind. Adv Immunol 2011; 110: 27–70.

    Article  CAS  PubMed  Google Scholar 

  20. Wuerffel R, Wang L, Grigera F, Manis J, Selsing E, Perlot T et al. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 2007; 27: 711–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delpy L, Le Bert M, Cogné M, Khamlichi AA . Germ-line transcription occurs on both the functional and the non-functional alleles of immunoglobulin constant heavy chain genes. Eur J Immunol 2003; 33: 2108–2113.

    Article  CAS  PubMed  Google Scholar 

  22. Borzillo GV, Cooper MD, Kubagawa H, Landay A, Burrows PD . Isotype switching in human B lymphocyte malignancies occurs by DNA deletion: evidence for nonspecific switch recombination. J Immunol 1987; 139: 1326–1335.

    CAS  PubMed  Google Scholar 

  23. Rothman P, Chen YY, Lutzker S, Li SC, Stewart V, Coffman R et al. Structure and expression of germ line immunoglobulin heavy-chain epsilon transcripts: interleukin-4 plus lipopolysaccharide-directed switching to C epsilon. Mol Cell Biol 1990; 10: 1672–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeevan-Raj BP, Robert I, Heyer V, Page A, Wang JH, Cammas F et al. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med 2011; 208: 1649–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwasato T, Shimizu A, Honjo T, Yamagishi H . Circular DNA is excised by immunoglobulin class switch recombination. Cell 1990; 62: 143–149.

    Article  CAS  PubMed  Google Scholar 

  26. Matsuoka M, Yoshida K, Maeda T, Usuda S, Sakano H . Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 1990; 62: 135–142.

    Article  CAS  PubMed  Google Scholar 

  27. Harriman W, Völk H, Defranoux N, Wabl M . Immunoglobulin class switch recombination. Annu Rev Immunol 1993; 11: 361–384.

    Article  CAS  PubMed  Google Scholar 

  28. Bruzik JP, Maniatis T . Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells. Nature 1992; 360: 692–695.

    Article  CAS  PubMed  Google Scholar 

  29. Bonen L . Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J Off Publ Fed Am Soc Exp Biol 1993; 7: 40–46.

    CAS  Google Scholar 

  30. Knight KL, Kingzette M, Crane MA, Zhai SK . Transchromosomally derived Ig heavy chains. J Immunol 1995; 155: 684–691.

    CAS  PubMed  Google Scholar 

  31. Casellas R, Nussenzweig A, Wuerffel R, Pelanda R, Reichlin A, Suh H et al. Ku80 is required for immunoglobulin isotype switching. EMBO J 1998; 17: 2404–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Delpy L, Decourt C, Le Bert M, Cogné M . B cell development arrest upon insertion of a neo gene between JH and Emu: promoter competition results in transcriptional silencing of germline JH and complete VDJ rearrangements. J Immunol 2002; 169: 6875–6882.

    Article  CAS  PubMed  Google Scholar 

  33. West RB, Lieber MR . The RAG-HMG1 complex enforces the 12/23 rule of V (D) J recombination specifically at the double-hairpin formation step. Mol Cell Biol 1998; 18: 6408–6415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hewitt SL, Yin B, Ji Y, Chaumeil J, Marszalek K, Tenthorey J et al. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nat Immunol 2009; 10: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skok JA, Brown KE, Azuara V, Caparros ML, Baxter J, Takacs K et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat Immunol 2001; 2: 848–854.

    Article  CAS  PubMed  Google Scholar 

  36. Delpy L, Sirac C, Le Morvan C, Cogné M . Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. J Immunol 2004; 173: 1842–1848.

    Article  CAS  PubMed  Google Scholar 

  37. Selvaraj S, R Dixon J, Bansal V, Ren B . Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol 2013; 31: 1111–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gostissa M, Schwer B, Chang A, Dong J, Meyers RM, Marecki GT et al. IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances. Proc Natl Acad Sci USA 2014; 111: 2644–2649.

    Article  CAS  PubMed  Google Scholar 

  39. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Association pour la Recherche sur le Cancer (ARC SL 220100601332), ANR (IgHAccess 2011 BSV302701). Ligue Nationale contre le Cancer and Conseil Régional du Limousin. BL and SMB were supported by Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Cogné.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laffleur, B., Bardet, S., Garot, A. et al. Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination. Genes Immun 15, 341–346 (2014). https://doi.org/10.1038/gene.2014.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.25

Search

Quick links