Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MMP expression in rheumatoid inflammation: the rs11568818 polymorphism is associated with MMP-7 expression at an extra-articular site

Abstract

Matrix metalloproteinases (MMPs) contribute to the joint damage in rheumatoid arthritis (RA). Less is known of the involvement of MMPs at extra-articular sites of rheumatoid inflammation. We assessed the relative contribution from MMP-1, MMP-3, MMP-7 and MMP-12 to joint and extra-articular tissue destruction and inflammation by comparing gene expression in joint synovia and subcutaneous rheumatoid nodules from RA patients. Expression of MMP-1 and MMP-3 predominated in synovia, whereas MMP-12 expression was significantly higher in rheumatoid nodules. Markedly higher MMP-7 expression distinguished a subgroup of nodules that featured infiltrating monocyte/macrophage-producing MMP-7 protein. The high MMP-7 expression in nodules was associated with the single-nucleotide polymorphism (SNP) rs11568818 (−181A>G, MMP-7 promoter) and more active inflammation within the nodule lesions. Patients with such nodules had significantly earlier age of RA onset. Our findings indicate that the expression of MMP-1 and MMP-3 occurs relatively independent of the tissue microenvironment with substantial expression also at extra-articular sites. MMP-12 expression reflects the involvement of monocyte/macrophages in rheumatoid inflammation. Evidence for the association between the rs11568818 SNP and increased MMP-7 expression is restricted to nodules, which indicates that consequences of the MMP-7 polymorphism are likely to manifest within aspects of immune/inflammatory activity that are monocyte/macrophage-mediated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wolfe F, Michaud K, Gefeller O, Choi HK . Predicting mortality in patients with rheumatoid arthritis. Arthritis Rheum 2003; 48: 1530–1542.

    Article  Google Scholar 

  2. Ziff M . The rheumatoid nodule. Arthritis Rheum 1990; 33: 761–767.

    Article  CAS  Google Scholar 

  3. Highton J, Hung N, Hessian P, Wilsher M . Pulmonary rheumatoid nodules demonstrating features usually associated with rheumatoid synovial membrane. Rheumatology 2007; 46: 811–814.

    Article  CAS  Google Scholar 

  4. Palmer DG, Hogg N, Allen CA, Highton J, Hessian PA . A mononuclear phagocyte subset associated with cell necrosis in rheumatoid nodules: identification with monoclonal antibody 5.5. Clin Immunol Immunopathol 1987; 45: 17–28.

    Article  CAS  Google Scholar 

  5. Highton J, Kean A, Hessian PA, Thomson J, Rietveld J, Hart DN . Cells expressing dendritic cell markers are present in the rheumatoid nodule. J Rheumatol 2000; 27: 339–346.

    CAS  PubMed  Google Scholar 

  6. Duke OL, Hobbs S, Panayi GS, Poulter LW, Rasker JJ, Janossy G . A combined immunohistological and histochemical analysis of lymphocyte and macrophage subpopulations in the rheumatoid nodule. Clin Exp Immunol 1984; 56: 239–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mellbye OJ, Forre O, Mollnes TE, Kvarnes L . Immunopathology of subcutaneous rheumatoid nodules. Ann Rheum Dis 1991; 50: 909–912.

    Article  CAS  Google Scholar 

  8. Highton J, Hessian PA, Stamp L . The rheumatoid nodule: peripheral or central to rheumatoid arthritis? Rheumatology 2007; 46: 1385–1387.

    Article  CAS  Google Scholar 

  9. Hessian PA, Highton J, Kean A, Sun CK, Chin M . Cytokine profile of the rheumatoid nodule suggests that it is a Th1 granuloma. Arthritis Rheum 2003; 48: 334–338.

    Article  CAS  Google Scholar 

  10. Wikaningrum R, Highton J, Parker A, Coleman M, Hessian PA, Roberts-Thompson PJ et al. Pathogenic mechanisms in the rheumatoid nodule: comparison of proinflammatory cytokine production and cell adhesion molecule expression in rheumatoid nodules and synovial membranes from the same patient. Arthritis Rheum 1998; 41: 1783–1797.

    Article  CAS  Google Scholar 

  11. Vincenti MP, Clark IM, Brinckerhoff CE . Using inhibitors of metalloproteinases to treat arthritis. Easier said than done? Arthritis Rheum 1994; 37: 1115–1126.

    Article  CAS  Google Scholar 

  12. Ahrens D, Koch AE, Pope RM, Stein-Picarella M, Niedbala MJ . Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum 1996; 39: 1576–1587.

    Article  CAS  Google Scholar 

  13. Pakozdi A, Amin MA, Haas CS, Martinez RJ, Haines GK, Santos LL et al. Macrophage migration inhibitory factor: a mediator of matrix metalloproteinase-2 production in rheumatoid arthritis. Arthritis Res Ther 2006; 8: R132.

    Article  Google Scholar 

  14. Matsushita I, Uzuki M, Matsuno H, Sugiyama E, Kimura T . Rheumatoid nodulosis during methotrexate therapy in a patient with rheumatoid arthritis. Mod Rheumatol 2006; 16: 401–403.

    Article  Google Scholar 

  15. Crouser ED, Culver DA, Knox KS, Julian MW, Shao G, Abraham S et al. Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 2009; 179: 929–938.

    Article  CAS  Google Scholar 

  16. Sheen P, O’Kane CM, Chaudhary K, Tovar M, Santillan C, Sosa J et al. High MMP-9 activity characterises pleural tuberculosis correlating with granuloma formation. Eur Respir J 2009; 33: 134–141.

    Article  CAS  Google Scholar 

  17. Vaalamo M, Kariniemi AL, Shapiro SD, Saarialho-Kere U . Enhanced expression of human metalloelastase (MMP-12) in cutaneous granulomas and macrophage migration. J Invest Dermatol 1999; 112: 499–505.

    Article  CAS  Google Scholar 

  18. Burke B . The role of matrix metalloproteinase 7 in innate immunity. Immunobiology 2004; 209: 51–56.

    Article  CAS  Google Scholar 

  19. Busiek DF, Baragi V, Nehring LC, Parks WC, Welgus HG . Matrilysin expression by human mononuclear phagocytes and its regulation by cytokines and hormones. J Immunol 1995; 154: 6484–6491.

    CAS  PubMed  Google Scholar 

  20. Busiek DF, Ross FP, McDonnell S, Murphy G, Matrisian LM, Welgus HG . The matrix metalloprotease matrilysin (PUMP) is expressed in developing human mononuclear phagocytes. J Biol Chem 1992; 267: 9087–9092.

    CAS  PubMed  Google Scholar 

  21. Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD et al. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci USA 1996; 93: 9748–9753.

    Article  CAS  Google Scholar 

  22. Shapiro SD, Kobayashi DK, Ley TJ . Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 1993; 268: 23824–23829.

    CAS  PubMed  Google Scholar 

  23. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD . Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 1996; 93: 3942–3946.

    Article  CAS  Google Scholar 

  24. Sternlicht MD, Werb Z . How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463–516.

    Article  CAS  Google Scholar 

  25. Parks WC, Wilson CL, Lopez-Boado YS . Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4: 617–629.

    Article  CAS  Google Scholar 

  26. Jormsjo S, Whatling C, Walter DH, Zeiher AM, Hamsten A, Eriksson P . Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 2001; 21: 1834–1839.

    Article  CAS  Google Scholar 

  27. Jormsjo S, Ye S, Moritz J, Walter DH, Dimmeler S, Zeiher AM et al. Allele-specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circ Res 2000; 86: 998–1003.

    Article  CAS  Google Scholar 

  28. Chen Y, Nixon NB, Dawes PT, Mattey DL . Influence of variations across the MMP-1 and -3 genes on the serum levels of MMP-1 and -3 and disease activity in rheumatoid arthritis. Genes Immun 2012; 13: 29–37.

    Article  CAS  Google Scholar 

  29. Li Y, Jin X, Kang S, Wang Y, Du H, Zhang J et al. Polymorphisms in the promoter regions of the matrix metalloproteinases-1, -3, -7, and -9 and the risk of epithelial ovarian cancer in China. Gynecol Oncol 2006; 101: 92–96.

    Article  CAS  Google Scholar 

  30. Zhang J, Jin X, Fang S, Wang R, Li Y, Wang N et al. The functional polymorphism in the matrix metalloproteinase-7 promoter increases susceptibility to esophageal squamous cell carcinoma, gastric cardiac adenocarcinoma and non-small cell lung carcinoma. Carcinogenesis 2005; 26: 1748–1753.

    Article  CAS  Google Scholar 

  31. Peng B, Cao L, Ma X, Wang W, Wang D, Yu L . Meta-analysis of association between matrix metalloproteinases 2, 7 and 9 promoter polymorphisms and cancer risk. Mutagenesis 2010; 25: 371–379.

    Article  CAS  Google Scholar 

  32. Ye S, Patodi N, Walker-Bone K, Reading I, Cooper C, Dennison E . Variation in the matrix metalloproteinase-3, -7, -12 and -13 genes is associated with functional status in rheumatoid arthritis. Int J Immunogenet 2007; 34: 81–85.

    Article  CAS  Google Scholar 

  33. Palmer DG, Hogg N, Highton J, Hessian PA, Denholm I . Macrophage migration and maturation within rheumatoid nodules. Arthritis Rheum 1987; 30: 728–736.

    Article  CAS  Google Scholar 

  34. Hessian PA, Edgeworth J, Hogg N . MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol 1993; 53: 197–204.

    Article  CAS  Google Scholar 

  35. Brinckerhoff CE . Joint destruction in arthritis: metalloproteinases in the spotlight. Arthritis Rheum 1991; 34: 1073–1075.

    Article  CAS  Google Scholar 

  36. Mohammed FF, Smookler DS, Khokha R . Metalloproteinases, inflammation, and rheumatoid arthritis. Ann Rheum Dis 2003; 62 (Suppl 2): ii43–ii47.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mattey DL, Nixon NB, Dawes PT, Ollier WE, Hajeer AH . Association of matrix metalloproteinase 3 promoter genotype with disease outcome in rheumatoid arthritis. Genes Immun 2004; 5: 147–149.

    Article  CAS  Google Scholar 

  38. Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H . Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 1990; 29: 10261–10270.

    Article  CAS  Google Scholar 

  39. Klein T, Bischoff R . Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2010; 41: 271–290.

    Article  Google Scholar 

  40. Ancuta P, Liu KY, Misra V, Wacleche VS, Gosselin A, Zhou X et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16− monocyte subsets. BMC Genomics 2009; 10: 403.

    Article  Google Scholar 

  41. Wang X, Liang J, Koike T, Sun H, Ichikawa T, Kitajima S et al. Overexpression of human matrix metalloproteinase-12 enhances the development of inflammatory arthritis in transgenic rabbits. Am J Pathol 2004; 165: 1375–1383.

    Article  CAS  Google Scholar 

  42. Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM . Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 2008; 112: 3455–3464.

    Article  CAS  Google Scholar 

  43. Feldmann M, Maini RN . Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 2003; 9: 1245–1250.

    Article  CAS  Google Scholar 

  44. Li Q, Park PW, Wilson CL, Parks WC . Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002; 111: 635–646.

    Article  CAS  Google Scholar 

  45. Kelly MM, Leigh R, Gilpin SE, Cheng E, Martin GE, Radford K et al. Cell-specific gene expression in patients with usual interstitial pneumonia. Am J Respir Crit Care Med 2006; 174: 557–565.

    Article  CAS  Google Scholar 

  46. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Arthritis New Zealand and the Health Research Council of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P A Hessian.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantseva, M., Hung, N., Highton, J. et al. MMP expression in rheumatoid inflammation: the rs11568818 polymorphism is associated with MMP-7 expression at an extra-articular site. Genes Immun 14, 162–169 (2013). https://doi.org/10.1038/gene.2012.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.65

Keywords

This article is cited by

Search

Quick links