Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reciprocal regulation of Rag expression in thymocytes by the zinc-finger proteins, Zfp608 and Zfp609

Abstract

Recombination-activating gene 1 (Rag1) and Rag2 enzymes are required for T cell receptor assembly and thymocyte development. The mechanisms underlying the transcriptional activation and repression of Rag1 and Rag2 are incompletely understood. The zinc-finger protein, Zfp608, represses Rag1 and Rag2 expression when expressed in thymocytes blocking T-cell maturation. Here we show that the related zinc-finger protein, Zfp609, is necessary for Rag1 and Rag2 expression in developing thymocytes. Zfp608 represses Rag1 and Rag2 expression indirectly by repressing the expression of Zfp609. Thus, the balance of Zfp608 and Zfp609 plays a critical role in regulating Rag1 and Rag2 expression, which may manifest itself not only during development of immature thymocytes into mature T cells but also in generation of the T-cell arm of the adaptive immune system, which does not fully develop until after birth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Godfrey DI, Zlotnik A . Control points in early T-cell development. Immunol Today 1993; 14: 547–553.

    Article  CAS  Google Scholar 

  2. Malissen B, Wegener AM, Hoeveler A, Marguet D . Molecular dissection of the T-cell receptor/CD3 complex. Immunol Ser 1993; 59: 29–40.

    CAS  PubMed  Google Scholar 

  3. Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H . Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature 1995; 375: 795–798.

    Article  CAS  Google Scholar 

  4. McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 1995; 83: 387–395.

    Article  CAS  Google Scholar 

  5. Schatz DG, Oettinger MA, Baltimore D . The V(D)J recombination activating gene, RAG-1. Cell 1989; 59: 1035–1048.

    Article  CAS  Google Scholar 

  6. Oettinger MA, Schatz DG, Gorka C, Baltimore D . RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 248: 1517–1523.

    Article  CAS  Google Scholar 

  7. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE . RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992; 68: 869–877.

    Article  CAS  Google Scholar 

  8. Hsu LY, Lauring J, Liang HE, Greenbaum S, Cado D, Zhuang Y et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 2003; 19: 105–117.

    Article  CAS  Google Scholar 

  9. Kuo TC, Schlissel MS . Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr Opin Immunol 2009; 21: 173–178.

    Article  CAS  Google Scholar 

  10. Piguet PF, Irle C, Kollatte E, Vassalli P . Post-thymic T lymphocyte maturation during ontogenesis. J Exp Med 1981; 154: 581–593.

    Article  CAS  Google Scholar 

  11. Spear PG, Wang AL, Rutishauser U, Edelman GM . Characterization of splenic lymphoid cells in fetal and newborn mice. J Exp Med 1973; 138: 557–573.

    Article  CAS  Google Scholar 

  12. Spear PG, Edelman GM . Maturation of the humoral immune response in mice. J Exp Med 1974; 139: 249–263.

    Article  CAS  Google Scholar 

  13. Amagai T, Itoi M, Kondo Y . Limited development capacity of the earliest embryonic murine thymus. Eur J Immunol 1995; 25: 757–762.

    Article  CAS  Google Scholar 

  14. Zhang F, Thomas LR, Oltz EM, Aune TM . Control of thymocyte development and recombination-activating gene expression by the zinc finger protein Zfp608. Nat Immunol 2006; 7: 1309–1316.

    Article  CAS  Google Scholar 

  15. Zhang F, Liang Z, Matsuki N, Van Kaer L, Joyce S, Wakeland EK et al. A murine locus on chromosome 18 controls NKT cell homeostasis and Th cell differentiation. J Immunol 2003; 171: 4613–4620.

    Article  CAS  Google Scholar 

  16. Couedel C, Roman C, Jones A, Vezzoni P, Villa A, Cortes P . Analysis of mutations from SCID and Omenn syndrome patients reveals the central role of the Rag2 PHD domain in regulating V(D)J recombination. J Clin Invest 2010; 120: 1337–1344.

    Article  CAS  Google Scholar 

  17. Haecker A, Qi D, Lilja T, Moussian B, Andrioli LP, Luschnig S et al. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos. PLoS Biol 2007; 5: e145.

    Article  Google Scholar 

  18. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005; 15: 1034–1050.

    Article  CAS  Google Scholar 

  19. Reed NP, Mortlock DP . Identification of a distant cis-regulatory element controlling pharyngeal arch-specific expression of zebrafish gdf6a/radar. Dev Dyn 2010; 239: 1047–1060.

    Article  CAS  Google Scholar 

  20. Kitajima M, Iwamura C, Miki-Hosokawa T, Shinoda K, Endo Y, Watanabe Y et al. Enhanced Th2 cell differentiation and allergen-induced airway inflammation in Zfp35-deficient mice. J Immunol 2009; 183: 5388–5396.

    Article  CAS  Google Scholar 

  21. Fuller K, Storb U . Identification and characterization of the murine Rag1 promoter. Mol Immunol 1997; 34: 939–954.

    Article  CAS  Google Scholar 

  22. Lauring J, Schlissel MS . Distinct factors regulate the murine RAG-2 promoter in B- and T-cell lines. Mol Cell Biol 1999; 19: 2601–2612.

    Article  CAS  Google Scholar 

  23. Chen Z, Xiao Y, Zhang J, Li J, Liu Y, Zhao Y et al. Transcription factors E2A, FOXO1 and FOXP1 regulate recombination activating gene expression in cancer cells. PLoS One 2011; 6: e20475.

    Article  CAS  Google Scholar 

  24. Wang L, Tsai CC . Atrophin proteins: an overview of a new class of nuclear receptor corepressors. Nucl Recept Signal 2008; 6: e009.

    Article  Google Scholar 

  25. Cebrat M, Miazek A, Kisielow P . Identification of a third evolutionarily conserved gene within the RAG locus and its RAG1-dependent and -independent regulation. Eur J Immunol 2005; 35: 2230–2238.

    Article  CAS  Google Scholar 

  26. Su RC, Brown KE, Saaber S, Fisher AG, Merkenschlager M, Smale ST . Dynamic assembly of silent chromatin during thymocyte maturation. Nat Genet 2004; 36: 502–506.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Tossberg, Chase Spurlock and Sarah Collier for scientific discussion and comments. Support was provided by grants from the National Institute of Allergy and Infectious Disease (AI 074945, AI 079732 and AI 044924) and the National Heart, Lung, and Blood Institute (T32HL094296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M Aune.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, N., Henderson, M., Oltz, E. et al. Reciprocal regulation of Rag expression in thymocytes by the zinc-finger proteins, Zfp608 and Zfp609. Genes Immun 14, 7–12 (2013). https://doi.org/10.1038/gene.2012.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.47

Keywords

Search

Quick links