Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes

Abstract

The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding therapeutic decisions and monitoring interventions. We previously demonstrated that plasma samples from recent-onset type 1 diabetes (RO T1D) patients induce a proinflammatory transcriptional signature in freshly drawn peripheral blood mononuclear cells (PBMCs) relative to that of unrelated healthy controls (HC). Here, using cryopreserved PBMC, we analyzed larger RO T1D and HC cohorts, examined T1D progression in pre-onset samples, and compared the RO T1D signature to those associated with three disorders characterized by airway infection and inflammation. The RO T1D signature, consisting of interleukin-1 cytokine family members, chemokines involved in immunocyte chemotaxis, immune receptors and signaling molecules, was detected during early pre-diabetes and found to resolve post-onset. The signatures associated with cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, patients with confirmed bacterial pneumonia, and subjects with H1N1 influenza all reflected immunological activation, yet each were distinct from one another and negatively correlated with that of T1D. This study highlights the remarkable capacity of cells to serve as biosensors capable of sensitively and comprehensively differentiating immunological states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Jenner RG, Young RA . Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 2005; 3: 281–294.

    Article  CAS  Google Scholar 

  2. Lewis CC, Yang JY, Huang X, Banerjee SK, Blackburn MR, Baluk P et al. Disease-specific gene expression profiling in multiple models of lung disease. Am J Respir Crit Care Med 2008; 177: 376–387.

    Article  CAS  Google Scholar 

  3. Medzhitov R, Janeway C . Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; 173: 89–97.

    Article  CAS  Google Scholar 

  4. Elson G, Dunn-Siegrist I, Daubeuf B, Pugin J . Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. Blood 2007; 109: 1574–1583.

    Article  CAS  Google Scholar 

  5. Underhill DM, Ozinsky A . Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 2002; 14: 103–110.

    Article  CAS  Google Scholar 

  6. Nau GJ, Schlesinger A, Richmond JF, Young RA . Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria. J Immunol 2003; 170: 5203–5209.

    Article  CAS  Google Scholar 

  7. Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S et al. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 2002; 3: 392–398.

    Article  CAS  Google Scholar 

  8. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA et al. The plasticity of dendritic cell responses to pathogens and their components. Science 2001; 294: 870–875.

    Article  CAS  Google Scholar 

  9. Lempicki RA, Polis MA, Yang J, McLaughlin M, Koratich C, Huang DW et al. Gene expression profiles in hepatitis C virus (HCV) and HIV coinfection: class prediction analyses before treatment predict the outcome of anti-HCV therapy among HIV-coinfected persons. J Infect Dis 2006; 193: 1172–1177.

    Article  CAS  Google Scholar 

  10. Thach DC, Agan BK, Olsen C, Diao J, Lin B, Gomez J et al. Surveillance of transcriptomes in basic military trainees with normal, febrile respiratory illness, and convalescent phenotypes. Genes Immun 2005; 6: 588–595.

    Article  CAS  Google Scholar 

  11. Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 2007; 109: 2066–2077.

    Article  CAS  Google Scholar 

  12. Simmons CP, Popper S, Dolocek C, Chau TN, Griffiths M, Dung NT et al. Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis 2007; 195: 1097–1107.

    Article  CAS  Google Scholar 

  13. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med 2007; 85: 613–621.

    Article  CAS  Google Scholar 

  14. Ockenhouse CF, Hu WC, Kester KE, Cummings JF, Stewart A, Heppner DG et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun 2006; 74: 5561–5573.

    Article  CAS  Google Scholar 

  15. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003; 197: 711–723.

    Article  CAS  Google Scholar 

  16. Crow MK, Kirou KA, Wohlgemuth J . Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 2003; 36: 481–490.

    Article  CAS  Google Scholar 

  17. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615.

    Article  CAS  Google Scholar 

  18. Edwards CJ, Feldman JL, Beech J, Shields KM, Stover JA, Trepicchio WL et al. Molecular profile of peripheral blood mononuclear cells from patients with rheumatoid arthritis. Mol Med 2007; 13: 40–58.

    Article  CAS  Google Scholar 

  19. van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE, Rustenburg F, Baggen JM et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis 2007; 66: 1008–1014.

    Article  CAS  Google Scholar 

  20. Lequerre T, Gauthier-Jauneau AC, Bansard C, Derambure C, Hiron M, Vittecoq O et al. Gene profiling in white blood cells predicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther 2006; 8: R105.

    Article  Google Scholar 

  21. Batliwalla FM, Baechler EC, Xiao X, Li W, Balasubramanian S, Khalili H et al. Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun 2005; 6: 388–397.

    Article  CAS  Google Scholar 

  22. Achiron A, Feldman A, Mandel M, Gurevich M . Impaired expression of peripheral blood apoptotic-related gene transcripts in acute multiple sclerosis relapse. Ann NY Acad Sci 2007; 1107: 155–167.

    Article  CAS  Google Scholar 

  23. Achiron A, Gurevich M, Snir Y, Segal E, Mandel M . Zinc-ion binding and cytokine activity regulation pathways predicts outcome in relapsing-remitting multiple sclerosis. Clin Exp Immunol 2007; 149: 235–242.

    Article  CAS  Google Scholar 

  24. Singh MK, Scott TF, LaFramboise WA, Hu FZ, Post JC, Ehrlich GD . Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing beta-interferon therapy. J Neurol Sci 2007; 258: 52–59.

    Article  CAS  Google Scholar 

  25. Burczynski ME, Peterson RL, Twine NC, Zuberek KA, Brodeur BJ, Casciotti L et al. Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 2006; 8: 51–61.

    Article  CAS  Google Scholar 

  26. Stoeckman AK, Baechler EC, Ortmann WA, Behrens TW, Michet CJ, Peterson EJ . A distinct inflammatory gene expression profile in patients with psoriatic arthritis. Genes Immun 2006; 7: 583–591.

    Article  CAS  Google Scholar 

  27. Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005; 57: 664–678.

    Article  CAS  Google Scholar 

  28. Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med 2007; 13: 59–68.

    Article  CAS  Google Scholar 

  29. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J . Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 2005; 201: 1479–1486.

    Article  CAS  Google Scholar 

  30. Allantaz F, Chaussabel D, Stichweh D, Bennett L, Allman W, Mejias A et al. Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. J Exp Med 2007; 204: 2131–2144.

    Article  CAS  Google Scholar 

  31. Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ . Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 2008; 180: 1929–1937.

    Article  CAS  Google Scholar 

  32. Kaldunski M, Jia S, Geoffrey R, Basken J, Prosser S, Kansra S et al. Identification of a serum-induced transcriptional signature associated with type 1 diabetes in the BioBreeding rat. Diabetes 2010; 59: 2375–2385.

    Article  CAS  Google Scholar 

  33. Jia S, Kaldunski M, Jailwala P, Geoffrey R, Kramer J, Wang X et al. Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in Type 1 diabetes. Physiol Genomics 2011; 43: 697–709.

    Article  CAS  Google Scholar 

  34. Van Belle V, Pelckmans K, Van Huffel S, Suykens JA . Improved performance on high-dimensional survival data by application of Survival-SVM. Bioinformatics 2011; 27: 87–94.

    Article  CAS  Google Scholar 

  35. Abdul-Rasoul M, Habib H, Al-Khouly M . ‘The honeymoon phase’ in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatr Diabetes 2006; 7: 101–107.

    Article  Google Scholar 

  36. Bonfanti R, Bazzigaluppi E, Calori G, Riva MC, Viscardi M, Bognetti E et al. Parameters associated with residual insulin secretion during the first year of disease in children and adolescents with Type 1 diabetes mellitus. Diabet Med 1998; 15: 844–850.

    Article  CAS  Google Scholar 

  37. Bonfanti R, Bognetti E, Meschi F, Brunelli A, Riva MC, Pastore MR et al. Residual beta-cell function and spontaneous clinical remission in type 1 diabetes mellitus: the role of puberty. Acta Diabetol 1998; 35: 91–95.

    Article  CAS  Google Scholar 

  38. Moser B, Wolf M, Walz A, Loetscher P . Chemokines: multiple levels of leukocyte migration control. Trends Immunol 2004; 25: 75–84.

    Article  CAS  Google Scholar 

  39. Chen J, Xu H, Aronow BJ, Jegga AG . Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 2007; 8: 392.

    Article  Google Scholar 

  40. Chen J, Bardes EE, Aronow BJ, Jegga AG . ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009; 37 (Web Server issue): W305–W311.

    Article  CAS  Google Scholar 

  41. Ernst J, Bar-Joseph Z . STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 2006; 7: 191.

    Article  Google Scholar 

  42. Terenzi F, White C, Pal S, Williams BR, Sen GC . Tissue-specific and inducer-specific differential induction of ISG56 and ISG54 in mice. J Virol 2007; 81: 8656–8665.

    Article  CAS  Google Scholar 

  43. Handley SA, Dube PH, Miller VL . Histamine signaling through the H(2) receptor in the Peyer’s patch is important for controlling Yersinia enterocolitica infection. Proc Natl Acad Sci USA 2006; 103: 9268–9273.

    Article  CAS  Google Scholar 

  44. Ziegler AG, Nepom GT . Prediction and pathogenesis in type 1 diabetes. Immunity 2010; 32: 468–478.

    Article  CAS  Google Scholar 

  45. Yu J, Yu L, Bugawan TL, Erlich HA, Barriga K, Hoffman M et al. Transient antiislet autoantibodies: infrequent occurrence and lack of association with ‘genetic’ risk factors. J Clin Endocrinol Metab 2000; 85: 2421–2428.

    CAS  PubMed  Google Scholar 

  46. Atkinson MA, Eisenbarth GS . Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001; 358: 221–229.

    Article  CAS  Google Scholar 

  47. Devendra D, Liu E, Eisenbarth GS . Type 1 diabetes: recent developments. BMJ 2004; 328: 750–754.

    Article  Google Scholar 

  48. Skyler JS . Prediction and prevention of type 1 diabetes: progress, problems, and prospects. Clin Pharmacol Ther 2007; 81: 768–771.

    Article  CAS  Google Scholar 

  49. Roep BO, Peakman M . Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes. Nat Rev Immunol 2010; 10: 145–152.

    Article  CAS  Google Scholar 

  50. Hussain MJ, Peakman M, Gallati H, Lo SS, Hawa M, Viberti GC et al. Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 1996; 39: 60–69.

    CAS  PubMed  Google Scholar 

  51. Perez F, Oyarzun A, Carrasco E, Angel B, Albala C, Santos JL . Plasma levels of interleukin-1beta, interleukin-2 and interleukin-4 in recently diagnosed type 1 diabetic children and their association with beta-pancreatic autoantibodies. Rev Med Chil 2004; 132: 413–420.

    Article  Google Scholar 

  52. Erbagci AB, Tarakcioglu M, Coskun Y, Sivasli E, Sibel Namiduru E . Mediators of inflammation in children with type I diabetes mellitus: cytokines in type I diabetic children. Clin Biochem 2001; 34: 645–650.

    Article  CAS  Google Scholar 

  53. Nicoletti F, Conget I, Di Marco R, Speciale AM, Morinigo R, Bendtzen K et al. Serum levels of the interferon-gamma-inducing cytokine interleukin-18 are increased in individuals at high risk of developing type I diabetes. Diabetologia 2001; 44: 309–311.

    Article  CAS  Google Scholar 

  54. Nicoletti F, Conget I, Di Mauro M, Di Marco R, Mazzarino MC, Bendtzen K et al. Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 2002; 45: 1107–1110.

    Article  CAS  Google Scholar 

  55. Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK . Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm 2006; 1: 59206.

    Google Scholar 

  56. Mahon JL, Sosenko JM, Rafkin-Mervis L, Krause-Steinrauf H, Lachin JM, Thompson C et al. The TrialNet Natural History Study of the Development of Type 1 Diabetes: objectives, design, and initial results. Pediatr Diabetes 2009; 10: 97–104.

    Article  Google Scholar 

  57. TEDDY Study Group. The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 2007; 8: 286–298.

    Article  Google Scholar 

  58. Padmos RC, Schloot NC, Beyan H, Ruwhof C, Staal FJ, de Ridder D et al. Distinct monocyte gene-expression profiles in autoimmune diabetes. Diabetes 2008; 57: 2768–2773.

    Article  CAS  Google Scholar 

  59. Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC . Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 2007; 92: 3705–3711.

    Article  CAS  Google Scholar 

  60. Bendtzen K, Mandrup-Poulsen T, Nerup J, Nielsen JH, Dinarello CA, Svenson M . Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 1986; 232: 1545–1547.

    Article  CAS  Google Scholar 

  61. Mandrup-Poulsen T . The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 1996; 39: 1005–1029.

    Article  CAS  Google Scholar 

  62. Mathis D, Vence L, Benoist C . beta-Cell death during progression to diabetes. Nature 2001; 414: 792–798.

    Article  CAS  Google Scholar 

  63. Giannoukakis N, Rudert WA, Trucco M, Robbins PD . Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. J Biol Chem 2000; 275: 36509–36513.

    Article  CAS  Google Scholar 

  64. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007; 356: 1517–1526.

    Article  CAS  Google Scholar 

  65. Thomas HE, Irawaty W, Darwiche R, Brodnicki TC, Santamaria P, Allison J et al. IL-1 receptor deficiency slows progression to diabetes in the NOD mouse. Diabetes 2004; 53: 113–121.

    Article  CAS  Google Scholar 

  66. Sandberg JO, Eizirik DL, Sandler S . IL-1 receptor antagonist inhibits recurrence of disease after syngeneic pancreatic islet transplantation to spontaneously diabetic non-obese diabetic (NOD) mice. Clin Exp Immunol 1997; 108: 314–317.

    Article  CAS  Google Scholar 

  67. Pickersgill LM, Mandrup-Poulsen TR . The anti-interleukin-1 in type 1 diabetes action trial--background and rationale. Diabetes Metab Res Rev 2009; 25: 321–324.

    Article  CAS  Google Scholar 

  68. Sumpter KM, Adhikari S, Grishman EK, White PC . Preliminary studies related to anti-interleukin-1beta therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes 2011; 12: 656–667.

    Article  CAS  Google Scholar 

  69. Sanda S, Bollyky J, Standifer N, Nepom G, Hamerman JA, Greenbaum C . Short-term IL-1beta blockade reduces monocyte CD11b integrin expression in an IL-8 dependent fashion in patients with type 1 diabetes. Clin Immunol 2010; 136: 170–173.

    Article  CAS  Google Scholar 

  70. Alberti KG, Zimmet PZ . Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539–553.

    Article  CAS  Google Scholar 

  71. Woo W, LaGasse JM, Zhou Z, Patel R, Palmer JP, Campus H et al. A novel high-throughput method for accurate, rapid, and economical measurement of multiple type 1 diabetes autoantibodies. J Immunol Methods 2000; 244: 91–103.

    Article  CAS  Google Scholar 

  72. Klitz W, Maiers M, Spellman S, Baxter-Lowe LA, Schmeckpeper B, Williams TM et al. New HLA haplotype frequency reference standards: high-resolution and large sample typing of HLA DR-DQ haplotypes in a sample of European Americans. Tissue Antigen 2003; 62: 296–307.

    Article  CAS  Google Scholar 

  73. Lee TW, Brownlee KG, Denton M, Littlewood JM, Conway SP . Reduction in prevalence of chronic Pseudomonas aeruginosa infection at a regional pediatric cystic fibrosis center. Pediatr Pulmonol 2004; 37: 104–110.

    Article  Google Scholar 

  74. Johansen HK, Norregaard L, Gotzsche PC, Pressler T, Koch C, Hoiby N . Antibody response to Pseudomonas aeruginosa in cystic fibrosis patients: a marker of therapeutic success?--A 30-year cohort study of survival in Danish CF patients after onset of chronic P. aeruginosa lung infection. Pediatr Pulmonol 2004; 37: 427–432.

    Article  Google Scholar 

  75. Chow AW, Hall CB, Klein JO, Kammer RB, Meyer RD, Remington JS . Evaluation of new anti-infective drugs for the treatment of respiratory tract infections. Infectious Diseases Society of America and the Food and Drug Administration. Clin Infect Dis 1992; 15 (Suppl 1): S62–S88.

    Article  Google Scholar 

  76. Sturn A, Quackenbush J, Trajanoski Z . Genesis: cluster analysis of microarray data. Bioinformatics 2002; 18: 207–208.

    Article  CAS  Google Scholar 

  77. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4: P3.

    Article  Google Scholar 

  78. Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA . Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4: R70.

    Article  Google Scholar 

  79. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29: 365–371.

    Article  CAS  Google Scholar 

  80. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and families who participated in this study. We acknowledge the physicians, nurses and staff of Children’s Hospital of Wisconsin and The Max McGee National Research Center for Juvenile Diabetes who assisted in subject recruitment and sample collection/processing. This work was supported by the Juvenile Diabetes Research Foundation International (1-2008-1026 and 5-2012-220 to MJH); the National Institutes of Health (R01AI078713 to MJH, DP2OD007031 to HL, R01DK080100 to XW, U19AI062627 to JG and 1-UL1-RR031973 the Clinical and Translational Science Institute of Southeast Wisconsin); Genentech (IST grant to HL); and The Children’s Hospital of Wisconsin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Hessner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, H., Wang, X., Kaldunski, M. et al. Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 13, 593–604 (2012). https://doi.org/10.1038/gene.2012.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.41

Keywords

This article is cited by

Search

Quick links