Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis

Abstract

The susceptibility, severity and prognosis of infectious diseases depend on the ability of the host immune system to respond to pathogens. Genetic variation of immune response genes is associated with susceptibility to and severity of infectious diseases. Bacterial meningitis (BM) is a serious and life-threatening infectious disease of the central nervous system (CNS). Despite adequate antibiotic treatment and immunization strategies, mortality remains high, especially in developing countries. Streptococcus pneumoniae and Neisseria meningitidis are the two most common causative microorganisms of BM worldwide. The pathogenesis of BM starts with mucosal bacterial colonization, followed by invasion and survival of bacteria in the bloodstream, crossing of the blood–brain barrier, finally causing infection in the CNS, where host defense is less adequate. Host defense to BM starts with a complex cascade of pathogen recognition and subsequent intracellular signaling causing transcription of genes leading to the production of inflammatory mediators. Although this immune reaction is essential for killing microbes, it is also associated with damage to healthy cells and thus adverse disease outcome. This review provides an overview of the pathogenesis of invasive pneumococcal disease and invasive meningococcal disease related to the influence of genetic variation in genes involved in innate immunity, focusing on BM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chavez-Bueno S, McCracken Jr GH . Bacterial meningitis in children. Pediatr Clin North Am 2005; 52: 795–810, vii.

    PubMed  Google Scholar 

  2. Mace SE . Acute bacterial meningitis. Emerg Med Clin North Am 2008; 26: 281–317, viii.

    PubMed  Google Scholar 

  3. van der Ende A, Spanjaard L . Bacterial meningitis in the Netherlands, annual report 2009, Netherlands reference laboratory for bacterial meningtis (AMC/RIVM). Amsterdam; 2009. Report No.: 2009.

  4. Koomen I, Grobbee DE, Roord JJ, Donders R, Jennekens-Schinkel A, van Furth AM . Hearing loss at school age in survivors of bacterial meningitis: assessment, incidence, and prediction. Pediatrics 2003; 112: 1049–1053.

    PubMed  Google Scholar 

  5. Koomen I, Raat H, Jennekens-Schinkel A, Grobbee DE, Roord JJ, van Furth AM . Academic and behavioral limitations and health-related quality of life in school-age survivors of bacterial meningitis. Qual Life Res 2005; 14: 1563–1572.

    PubMed  Google Scholar 

  6. Kim KS . Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 2003; 4: 376–385.

    CAS  PubMed  Google Scholar 

  7. Brouwer MC, Read RC, van de Beek D . Host genetics and outcome in meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 2010; 10: 262–274.

    CAS  PubMed  Google Scholar 

  8. Haralambous E, Weiss HA, Radalowicz A, Hibberd ML, Booy R, Levin M . Sibling familial risk ratio of meningococcal disease in UK Caucasians. Epidemiol Infect 2003; 130: 413–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schroder NW, Schumann RR . Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 2005; 5: 156–164.

    Google Scholar 

  10. Brouwer MC, de Gans J, Heckenberg SG, Zwinderman AH, van der Poll T, van de Beek D . Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 2009; 9: 31–44.

    CAS  Google Scholar 

  11. Netea MG, Van der Meer JW . Immunodeficiency and genetic defects of pattern-recognition receptors. N Engl J Med 2011; 364: 60–70.

    CAS  PubMed  Google Scholar 

  12. Sanders MS, van Well GT, Ouburg S, Lundberg PS, van Furth AM, Morre SA . Single nucleotide polymorphisms in TLR9 are highly associated with susceptibility to bacterial meningitis in children. Clin Infect Dis 2011; 52: 475–480.

    CAS  PubMed  Google Scholar 

  13. Texereau J, Chiche JD, Taylor W, Choukroun G, Comba B, Mira JP . The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 2005; 41 (Suppl 7): S408–S415.

    CAS  PubMed  Google Scholar 

  14. Davila S, Wright VJ, Khor CC, Sim KS, Binder A, Breunis W et al. Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nature Genetics 2010; 42: 772–779.

    CAS  PubMed  Google Scholar 

  15. Bogaert D, de Groot R, Hermans PW . Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4: 144–154.

    CAS  PubMed  Google Scholar 

  16. Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I et al. Meningococcal interactions with the host. Vaccine 2009; 27 (Suppl 2): B78–B89.

    CAS  PubMed  Google Scholar 

  17. Virji M . Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 2009; 7: 274–286.

    CAS  PubMed  Google Scholar 

  18. Jack DL, Cole J, Naylor SC, Borrow R, Kaczmarski EB, Klein NJ et al. Genetic polymorphism of the binding domain of surfactant protein-A2 increases susceptibility to meningococcal disease. Clin Infect Dis 2006; 43: 1426–1433.

    CAS  Google Scholar 

  19. Crouch E, Wright JR . Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 2001; 63: 521–554.

    CAS  PubMed  Google Scholar 

  20. Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A . Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 2006; 74: 4014–4020.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN . Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci USA 2003; 100: 4215–4220.

    CAS  PubMed  Google Scholar 

  22. Kadioglu A, Weiser JN, Paton JC, Andrew PW . The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 2008; 6: 288–301.

    CAS  PubMed  Google Scholar 

  23. Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 2000; 102: 827–837.

    CAS  PubMed  Google Scholar 

  24. Hirst RA, Kadioglu A, O’Callaghan C, Andrew PW . The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol 2004; 138: 195–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stephens DS . Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 2009; 27 (Suppl 2): B71–B77.

    PubMed  PubMed Central  Google Scholar 

  26. Stephens DS, Greenwood B, Brandtzaeg P . Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 2007; 369: 2196–2210.

    PubMed  Google Scholar 

  27. Virji M, Makepeace K, Ferguson DJ, Watt SM . Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol Microbiol 1996; 22: 941–950.

    CAS  PubMed  Google Scholar 

  28. Bradley CJ, Griffiths NJ, Rowe HA, Heyderman RS, Virji M . Critical determinants of the interactions of capsule-expressing Neisseria meningitidis with host cells: the role of receptor density in increased cellular targeting via the outer membrane Opa proteins. Cell Microbiol 2005; 7: 1490–1503.

    CAS  PubMed  Google Scholar 

  29. Hill DJ, Griffiths NJ, Borodina E, Virji M . Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clin Sci (Lond) 2010; 118: 547–564.

    CAS  Google Scholar 

  30. Sim RJ, Harrison MM, Moxon ER, Tang CM . Underestimation of meningococci in tonsillar tissue by nasopharyngeal swabbing. Lancet 2000; 356: 1653–1654.

    CAS  PubMed  Google Scholar 

  31. Sjolinder H, Jonsson AB . Olfactory nerve-A novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010; 5: e14034.

    PubMed  PubMed Central  Google Scholar 

  32. Tzeng YL, Stephens DS . Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect 2000; 2: 687–700.

    CAS  PubMed  Google Scholar 

  33. Claus H, Maiden MC, Maag R, Frosch M, Vogel U . Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology 2002; 148 (Part 6): 1813–1819.

    CAS  PubMed  Google Scholar 

  34. Callaghan MJ, Rockett K, Banner C, Haralambous E, Betts H, Faust S et al. Haplotypic diversity in human CEACAM genes: effects on susceptibility to meningococcal disease. Genes Immun 2008; 9: 30–37.

    CAS  PubMed  Google Scholar 

  35. Hirst RA, Gosai B, Rutman A, Guerin CJ, Nicotera P, Andrew PW et al. Streptococcus pneumoniae deficient in pneumolysin or autolysin has reduced virulence in meningitis. J Infect Dis 2008; 197: 744–751.

    PubMed  Google Scholar 

  36. Biesma DH, Hannema AJ, van Velzen-Blad H, Mulder L, van ZR, Kluijt I et al. A family with complement factor D deficiency. J Clin Invest 2001; 108: 233–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fremeaux-Bacchi V, Le CA, Blouin J, Kazatchkine MD, Weiss L . Partial properdin deficiency revealed by a septicemia caused by Neisseria meningitidis. Presse Med 1995; 24: 1305–1307.

    CAS  PubMed  Google Scholar 

  38. Haralambous E, Dolly SO, Hibberd ML, Litt DJ, Udalova IA, O’dwyer C et al. Factor H, a regulator of complement activity, is a major determinant of meningococcal disease susceptibility in UK Caucasian patients. Scand J Infect Dis 2006; 38: 764–771.

    CAS  PubMed  Google Scholar 

  39. Schneider MC, Exley RM, Ram S, Sim RB, Tang CM . Interactions between Neisseria meningitidis and the complement system. Trends Microbiol 2007; 15: 233–240.

    CAS  PubMed  Google Scholar 

  40. Rupprecht TA, Angele B, Klein M, Heesemann J, Pfister HW, Botto M et al. Complement C1q and C3 are critical for the innate immune response to Streptococcus pneumoniae in the central nervous system. J Immunol 2007; 178: 1861–1869.

    CAS  PubMed  Google Scholar 

  41. Barnum SR . Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med 1995; 6: 132–146.

    CAS  PubMed  Google Scholar 

  42. Tuomanen E, Hengstler B, Zak O, Tomasz A . The role of complement in inflammation during experimental pneumococcal meningitis. Microb Pathog 1986; 1: 15–32.

    CAS  PubMed  Google Scholar 

  43. Zwijnenburg PJ, van der Poll T, Florquin S, Polfliet MM, van den Berg TK, Dijkstra CD et al. C1 inhibitor treatment improves host defense in pneumococcal meningitis in rats and mice. J Infect Dis 2007; 196: 115–123.

    PubMed  Google Scholar 

  44. Ernst T, Spath PJ, Aebi C, Schaad UB, Bianchetti MG . Screening for complement deficiency in bacterial meningitis. Acta Paediatr 1997; 86: 1009–1010.

    CAS  PubMed  Google Scholar 

  45. Totan M . Recurrent pneumococcal meningitis in homozygous C3 deficiency. Indian J Pediatr 2002; 69: 625–626.

    PubMed  Google Scholar 

  46. Singh DK, Rai R . Recurrent meningitis secondary to isolated C3 deficiency. Indian J Pediatr 2009; 76: 95–96.

    CAS  PubMed  Google Scholar 

  47. Farhoudi A, Bazargan N, Pourpak Z, Mahmoudi M . Two related cases of primary complement deficiencies. Iran J Allergy Asthma Immunol 2003; 2: 69–74.

    CAS  PubMed  Google Scholar 

  48. Bhide SS . Recurrent meningitis in a family with C3 deficiency. Indian Pediatr 2006; 43: 269–270.

    CAS  PubMed  Google Scholar 

  49. Granoff DM, Welsch JA, Ram S . Binding of complement factor H (fH) to Neisseria meningitidis is specific for human fH and inhibits complement activation by rat and rabbit sera. Infect Immun 2009; 77: 764–769.

    CAS  PubMed  Google Scholar 

  50. Roxo JP, Ferriani VP, Teixeira JE, Barbosa JE . Complement levels in Brazilian children during and after meningococcal meningitis. Clinics (Sao Paulo) 2005; 60: 127–130.

    Google Scholar 

  51. Lopez-Lera A, Garrido S, de la Cruz RM, Fontan G, Lopez-Trascasa M . Molecular characterization of three new mutations causing C5 deficiency in two non-related families. Mol Immunol 2009; 46: 2340–2347.

    CAS  PubMed  Google Scholar 

  52. Delgado-Cervino E, Fontan G, Lopez-Trascasa M . C5 complement deficiency in a Spanish family. Molecular characterization of the double mutation responsible for the defect. Mol Immunol 2005; 42: 105–111.

    CAS  PubMed  Google Scholar 

  53. Nishizaka H, Horiuchi T, Zhu ZB, Fukumori Y, Nagasawa K, Hayashi K et al. Molecular bases for inherited human complement component C6 deficiency in two unrelated individuals. J Immunol 1996; 156: 2309–2315.

    CAS  PubMed  Google Scholar 

  54. Schirinzi R, Lantin JP, Fremeaux-Bacchi V, Schifferli JA, Trendelenburg M . Combined-heterozygous deficiency of complement C7 in a patient with recurrent meningitis]. Med Klin (Munich) 2006; 101: 655–658.

    Google Scholar 

  55. Barroso S, Rieubland C, José álvarez A, Lopez-Trascasa M, Bart PA, Nunez-Roldan A et al. Molecular defects of the C7 gene in two patients with complement C7 deficiency. Immunology 2006; 118: 257–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nishizaka H, Horiuchi T, Zhu ZB, Fukumori Y, Volanakis JE . Genetic bases of human complement C7 deficiency. J Immunol 1996; 157: 4239–4243.

    CAS  PubMed  Google Scholar 

  57. Arnold DF, Roberts AG, Thomas A, Ferry B, Morgan BP, Chapel H . A novel mutation in a patient with a deficiency of the eighth component of complement associated with recurrent meningococcal meningitis. J Clin Immunol 2009; 29: 691–695.

    CAS  PubMed  Google Scholar 

  58. Thiel S, Frederiksen PD, Jensenius JC . Clinical manifestations of mannan-binding lectin deficiency. Mol Immunol 2006; 43: 86–96.

    CAS  PubMed  Google Scholar 

  59. Roy S, Knox K, Segal S, Griffiths D, Moore CE, Welsh KI et al. MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 2002; 359: 1569–1573.

    CAS  PubMed  Google Scholar 

  60. Kronborg G, Weis N, Madsen HO, Pedersen SS, Wejse C, Nielsen H et al. Variant mannose-binding lectin alleles are not associated with susceptibility to or outcome of invasive pneumococcal infection in randomly included patients. J Infect Dis 2002; 185: 1517–1520.

    CAS  PubMed  Google Scholar 

  61. Moens L, Van Hoeyveld E, Peetermans WE, De Boeck C, erhaegen J, ossuyt X . Mannose-binding lectin genotype and invasive pneumococcal infection. Hum Immunol 2006; 67: 605–611.

    CAS  PubMed  Google Scholar 

  62. Vardar F, Pehlivan S, Onay H, Atlihan F, Guliz N, Ozkinay C et al. Association between mannose binding lectin polymorphisms and predisposition to bacterial meningitis. Turk J Pediatr 2007; 49: 270–273.

    PubMed  Google Scholar 

  63. Faber J, Schuessler T, Finn A, Murdoch C, Zenz W, Habermehl P et al. Age-dependent association of human mannose-binding lectin mutations with susceptibility to invasive meningococcal disease in childhood. Pediatr Infect Dis J 2007; 26: 243–246.

    PubMed  Google Scholar 

  64. Hibberd ML, Sumiya M, Summerfield JA, Booy R, Levin M . Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Meningococcal Research Group. Lancet 1999; 353: 1049–1053.

    CAS  PubMed  Google Scholar 

  65. van der Zwet WC, Catsburg A, van Elburg RM, Savelkoul PH, Vandenbroucke-Grauls CM . Mannose-binding lectin (MBL) genotype in relation to risk of nosocomial infection in pre-term neonates in the neonatal intensive care unit. Clin Microbiol Infect 2008; 14: 130–135.

    CAS  PubMed  Google Scholar 

  66. Sprong T, Roos D, Weemaes C, Neeleman C, Geesing CL, Mollnes TE et al. Deficient alternative complement pathway activation due to factor D deficiency by 2 novel mutations in the complement factor D gene in a family with meningococcal infections. Blood 2006; 107: 4865–4870.

    CAS  PubMed  Google Scholar 

  67. Nikulin J, Panzner U, Frosch M, Schubert-Unkmeir A . Intracellular survival and replication of Neisseria meningitidis in human brain microvascular endothelial cells. Int J Med Microbiol 2006; 296: 553–558.

    CAS  PubMed  Google Scholar 

  68. Ring A, Weiser JN, Tuomanen EI . Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 1998; 102: 347–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim KS . Acute bacterial meningitis in infants and children. Lancet Infect Dis 2010; 10: 32–42.

    CAS  PubMed  Google Scholar 

  70. Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI . Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 1995; 377: 435–438.

    CAS  PubMed  Google Scholar 

  71. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 2009; 119: 1638–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D et al. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 2009; 206: 1845–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kostiukova NN, Volkova MO, Kvetnaia AS, Ivanova VV, Markov OP . The pathogenicity factors of Streptococcus pneumoniae strains causing meningitis. Zh Mikrobiol Epidemiol Immunobiol; 3##1996: 47–49.

    Google Scholar 

  74. Gillespie SH, Balakrishnan I . Pathogenesis of pneumococcal infection. J Med Microbiol 2000; 49: 1057–1067.

    CAS  PubMed  Google Scholar 

  75. Coureuil M, Mikaty G, Miller F, Lecuyer H, Bernard C, Bourdoulous S et al. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 2009; 325: 83–87.

    CAS  PubMed  Google Scholar 

  76. Kim KS . Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 2008; 6: 625–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shusta EV, Zhu C, Boado RJ, Pardridge WM . Subtractive expression cloning reveals high expression of CD46 at the blood-brain barrier. J Neuropathol Exp Neurol 2002; 61: 597–604.

    CAS  PubMed  Google Scholar 

  78. Johansson L, Rytkonen A, Bergman P, Albiger B, Kallstrom H, Hokfelt T et al. CD46 in meningococcal disease. Science 2003; 301: 373–375.

    CAS  PubMed  Google Scholar 

  79. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005; 175: 4320–4330.

    CAS  PubMed  Google Scholar 

  80. Koedel U . Toll-like receptors in bacterial meningitis. Curr Top Microbiol Immunol 2009; 336: 15–40.

    CAS  PubMed  Google Scholar 

  81. Mogensen TH, Paludan SR, Kilian M, Ostergaard L . Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 2006; 80: 267–277.

    CAS  PubMed  Google Scholar 

  82. Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003; 299: 2076–2079.

    CAS  PubMed  Google Scholar 

  83. Ku CL, Picard C, Erdos M, Jeurissen A, Bustamante J, Puel A et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet 2007; 44: 16–23.

    CAS  PubMed  Google Scholar 

  84. Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW et al. MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 2004; 127 (Part 6): 1437–1445.

    PubMed  Google Scholar 

  85. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 2008; 321: 691–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ku CL, von Bernuth H, Picard C, Zhang SY, Chang HH, Yang K et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med 2007; 204: 2407–2422.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Medvedev AE, Lentschat A, Kuhns DB, Blanco JC, Salkowski C, Zhang S et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J Exp Med 2003; 198: 521–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ku CL, Dupuis-Girod S, Dittrich AM, Bustamante J, Santos OF, Schulze I et al. NEMO mutations in 2 unrelated boys with severe infections and conical teeth. Pediatrics 2005; 115: e615–e619.

    PubMed  Google Scholar 

  89. Koedel U, Klein M, Pfister HW . New understandings on the pathophysiology of bacterial meningitis. Curr Opin Infect Dis 2010; 23: 217–223.

    CAS  PubMed  Google Scholar 

  90. Moens L, Verhaegen J, Pierik M, Vermeire S, De BK, Peetermans WE et al. Toll-like receptor 2 and Toll-like receptor 4 polymorphisms in invasive pneumococcal disease. Microbes Infect 2007; 9: 15–20.

    CAS  PubMed  Google Scholar 

  91. Yuan FF, Marks K, Wong M, Watson S, de LE, McIntyre PB et al. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 2008; 86: 268–270.

    CAS  PubMed  Google Scholar 

  92. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 2007; 39: 523–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chapman SJ, Khor CC, Vannberg FO, Frodsham A, Walley A, Maskell NA et al. IkappaB genetic polymorphisms and invasive pneumococcal disease. Am J Respir Crit Care Med 2007; 176: 181–187.

    CAS  PubMed  Google Scholar 

  94. Biebl A, Muendlein A, Kazakbaeva Z, Heuberger S, Sonderegger G, Drexel H et al. CD14 C-159T and toll-like receptor 4 Asp299Gly polymorphisms in surviving meningococcal disease patients. PLoS One 2009; 4: e7374.

    PubMed  PubMed Central  Google Scholar 

  95. Smirnova I, Mann N, Dols A, Derkx HH, Hibberd ML, Levin M et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci USA 2003; 100: 6075–6080.

    CAS  PubMed  Google Scholar 

  96. Emonts M, Hazelzet JA, de GR, Hermans PW . Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis 2003; 3: 565–577.

    CAS  PubMed  Google Scholar 

  97. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25: 187–191.

    CAS  PubMed  Google Scholar 

  98. Allen A, Obaro S, Bojang K, Awomoyi AA, Greenwood BM, Whittle H et al. Variation in Toll-like receptor 4 and susceptibility to group A meningococcal meningitis in Gambian children. Pediatr Infect Dis J 2003; 22: 1018–1019.

    PubMed  Google Scholar 

  99. Misch EA, Hawn TR . Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 2008; 114: 347–360.

    Google Scholar 

  100. Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE et al. Human Toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 2002; 186: 1522–1525.

    CAS  PubMed  Google Scholar 

  101. Faber J, Meyer CU, Gemmer C, Russo A, Finn A, Murdoch C et al. Human toll-like receptor 4 mutations are associated with susceptibility to invasive meningococcal disease in infancy. Pediatr Infect Dis J 2006; 25: 80–81.

    PubMed  Google Scholar 

  102. Faber J, Henninger N, Finn A, Zenz W, Zepp F, Knuf M . A toll-like receptor 4 variant is associated with fatal outcome in children with invasive meningococcal disease. Acta Paediatr 2009; 98: 548–552.

    CAS  PubMed  Google Scholar 

  103. LeVan TD, Bloom JW, Bailey TJ, Karp CL, Halonen M, Martinez FD et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol 2001; 167: 5838–5844.

    CAS  PubMed  Google Scholar 

  104. van Furth AM, Roord JJ, van Furth R . Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 1996; 64: 4883–4890.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kornelisse RF, Hack CE, Savelkoul HF, van der Pouw Kraan TC, Hop WC, van Mierlo G et al. Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis. Infect Immun 1997; 65: 877–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Carrol ED, Guiver M, Nkhoma S, Mankhambo LA, Marsh J, Balmer P et al. High pneumococcal DNA loads are associated with mortality in Malawian children with invasive pneumococcal disease. Pediatr Infect Dis J 2007; 26: 416–422.

    PubMed  PubMed Central  Google Scholar 

  107. Freyer D, Weih M, Weber JR, Burger W, Scholz P, Manz R et al. Pneumococcal cell wall components induce nitric oxide synthase and TNF-alpha in astroglial-enriched cultures. Glia 1996; 16: 1–6.

    CAS  PubMed  Google Scholar 

  108. Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR et al. Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol 1999; 58: 1078–1089.

    CAS  PubMed  Google Scholar 

  109. Angstwurm K, Freyer D, Dirnagl U, Hanisch UK, Schumann RR, Einhaupl KM et al. Tumour necrosis factor alpha induces only minor inflammatory changes in the central nervous system, but augments experimental meningitis. Neuroscience 1998; 86: 627–634.

    CAS  PubMed  Google Scholar 

  110. Tsao N, Chang WW, Liu CC, Lei HY . Development of hematogenous pneumococcal meningitis in adult mice: the role of TNF-alpha. FEMS Immunol Med Microbiol 2002; 32: 133–140.

    CAS  PubMed  Google Scholar 

  111. Zwijnenburg PJ, van der Poll T, Florquin S, Roord JJ, van Furth AM . IL-1 receptor type 1 gene-deficient mice demonstrate an impaired host defense against pneumococcal meningitis. J Immunol 2003; 170: 4724–4730.

    CAS  PubMed  Google Scholar 

  112. Klein M, Paul R, Angele B, Popp B, Pfister HW, Koedel U . Protein expression pattern in experimental pneumococcal meningitis. Microbes Infect 2006; 8: 974–983.

    CAS  PubMed  Google Scholar 

  113. Koedel U, Bernatowicz A, Frei K, Fontana A, Pfister HW . Systemically (but not intrathecally) administered IL-10 attenuates pathophysiologic alterations in experimental pneumococcal meningitis. J Immunol 1996; 157: 5185–5191.

    CAS  PubMed  Google Scholar 

  114. Paul R, Koedel U, Winkler F, Kieseier BC, Fontana A, Kopf M et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 2003; 126 (Part 8): 1873–1882.

    PubMed  Google Scholar 

  115. Ostergaard C, Yieng-Kow RV, Larsen CG, Mukaida N, Matsushima K, Benfield T et al. Treatment with a monocolonal antibody to IL-8 attenuates the pleocytosis in experimental pneumococcal meningitis in rabbits when given intravenously, but not intracisternally. Clin Exp Immunol 2000; 122: 207–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zwijnenburg PJ, van der Poll T, Florquin S, Akira S, Takeda K, Roord JJ et al. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis. J Neuroimmunol 2003; 138: 31–37.

    CAS  PubMed  Google Scholar 

  117. Malipiero U, Koedel U, Pfister W, Fontana A . Bacterial meningitis: the role of transforming growth factor-Beta in innate immunity and secondary brain damage. Neurodegener Dis 2007; 4: 43–50.

    CAS  PubMed  Google Scholar 

  118. Hausler KG, Prinz M, Nolte C, Weber JR, Schumann RR, Kettenmann H et al. Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur J Neurosci 2002; 16: 2113–2122.

    PubMed  Google Scholar 

  119. Lapinet JA, Scapini P, Calzetti F, Perez O, Cassatella MA . Gene expression and production of tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-8, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles. Infect Immun 2000; 68: 6917–6923.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. van Deuren M, van der Ven-Jongekrijg J, Bartelink AK, van Dalen R, Sauerwein RW, van der Meer JW . Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 1995; 172: 433–439.

    CAS  PubMed  Google Scholar 

  121. van Deuren M, van der Ven-Jongekrijg J, Vannier E, van Dalen R, Pesman G, Bartelink AK et al. The pattern of interleukin-1beta (IL-1beta) and its modulating agents IL-1 receptor antagonist and IL-1 soluble receptor type II in acute meningococcal infections. Blood 1997; 90: 1101–1108.

    CAS  PubMed  Google Scholar 

  122. Moller AS, Bjerre A, Brusletto B, Joo GB, Brandtzaeg P, Kierulf P . Chemokine patterns in meningococcal disease. J Infect Dis 2005; 191: 768–775.

    CAS  PubMed  Google Scholar 

  123. Schaaf B, Rupp J, Muller-Steinhardt M, Kruse J, Boehmke F, Maass M et al. The interleukin-6 −174 promoter polymorphism is associated with extrapulmonary bacterial dissemination in Streptococcus pneumoniae infection. Cytokine 2005; 31: 324–328.

    CAS  PubMed  Google Scholar 

  124. Schaaf BM, Boehmke F, Esnaashari H, Seitzer U, Kothe H, Maass M et al. Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism. Am J Respir Crit Care Med 2003; 168: 476–480.

    PubMed  Google Scholar 

  125. Doernberg S, Schaaf B, Dalhoff K, Leng L, Beitin A, Quagliarello V et al. Association of macrophage migration inhibitory factor (MIF) polymorphisms with risk of meningitis from Streptococcus pneumoniae. Cytokine 2011; 53: 292–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Balding J, Healy CM, Livingstone WJ, White B, Mynett-Johnson L, Cafferkey M et al. Genomic polymorphic profiles in an Irish population with meningococcaemia: is it possible to predict severity and outcome of disease? Genes Immun 2003; 4: 533–540.

    CAS  PubMed  Google Scholar 

  127. Carrol ED, Mobbs KJ, Thomson AP, Hart CA . Variable number tandem repeat polymorphism of the interleukin-1 receptor antagonist gene in meningococcal disease. Clin Infect Dis 2002; 35: 495–497.

    CAS  PubMed  Google Scholar 

  128. Read RC, Cannings C, Naylor SC, Timms JM, Maheswaran R, Borrow R et al. Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann Intern Med 2003; 138: 534–541.

    CAS  PubMed  Google Scholar 

  129. Endler G, Marculescu R, Starkl P, Binder A, Geishofer G, Muller M et al. Polymorphisms in the interleukin-1 gene cluster in children and young adults with systemic meningococcemia. Clin Chem 2006; 52: 511–514.

    CAS  PubMed  Google Scholar 

  130. Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW et al. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 2003; 170: 438 .

    CAS  PubMed  Google Scholar 

  131. Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R . Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 2002; 186: 798–806.

    CAS  PubMed  Google Scholar 

  132. Klein M, Obermaier B, Angele B, Pfister HW, Wagner H, Koedel U et al. Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J Infect Dis 2008; 198: 1028–1036.

    CAS  PubMed  Google Scholar 

  133. Cook DN, Pisetsky DS, Schwartz DA . Toll-like receptors in the pathogenesis of human disease. Nat Immunol 2004; 5: 975–979.

    CAS  PubMed  Google Scholar 

  134. Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI . Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 1995; 377: 435–438.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M van Furth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, M., van Well, G., Ouburg, S. et al. Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis. Genes Immun 12, 321–334 (2011). https://doi.org/10.1038/gene.2011.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.20

Keywords

This article is cited by

Search

Quick links