Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasticity of the murine spleen T-cell cholinergic receptors and their role in in vitro differentiation of naïve CD4 T cells toward the Th1, Th2 and Th17 lineages

Abstract

Acetylcholine (ACh) regulates vital functions of T cells by acting on the nicotinic and muscarinic classes of cholinergic receptors, nAChR and mAChRs, respectively. This study was performed in murine splenic T cells. In freshly isolated CD4 and CD8 T cells, we detected mRNAs encoding α5, α9, α10, β1, β2, β4 nAChR subunits and M1, M3, M4 and M5 mAChR subtypes, whereas α2 was detected only in CD8 T cells. In vitro activation of CD4 T cells through T-cell receptor (TCR)/CD3 cross-linking was associated with the appearance of α4 and α7, upregulation of α5, α10, β4, M1 and M5 and downregulation of α9 and β2, whereas in vitro activation of CD8 T cells also featured the appearance of α4 and α7, as well as upregulation of α2, α5, β4, M1 and M4, and downregulation of α10, β1, β2 and M3. In vitro polarization toward T helper (Th) 1 lineage was associated with a decrease of β2, β4 and M3 expression; that toward Th2 cells with downregulation of α9 and M3, and upregulation of M1 and M5; and that toward Th17 phenotype with downregulation of α9, α10, β2 and M3 mAChR. Polarized T cells also expressed α4, but not α1, α2, α3, α6, β3 or M2. To determine the role of cholinergic receptors in mediating the immunoregulatory action of autocrine/paracrine ACh, we analyzed the effects of nicotinic and muscarinic agonists±antagonists on cytokine production in the CD4+CD62L+ T cells co-stimulated via TCR/CD3 cross-linking. The nicotinergic stimulation upregulated interferon-γ (IFN-γ) and downregulated interleukin (IL)-17 secretion, whereas the muscarinic stimulation enhanced IL-10 and IL-17 and inhibited INF-γ secretion. These results demonstrated plasticity of the T-cell cholinergic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wessler I, Kirkpatrick CJ . Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 2008; 154: 1558–1571.

    Article  CAS  Google Scholar 

  2. Fujii T, Takada-Takatori Y, Kawashima K . Basic and clinical aspects of non-neuronal acetylcholine: expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy. J Pharmacol Sci 2008; 106: 186–192.

    Article  CAS  Google Scholar 

  3. Kawashima K, Fujii T . Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci 2004; 9: 2063–2085.

    Article  CAS  Google Scholar 

  4. Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H . Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci 2007; 80: 2314–2319.

    Article  CAS  Google Scholar 

  5. Chernyavsky AI, Arredondo J, Galitovskiy V, Qian J, Grando SA . Structure and function of the nicotinic arm of acetylcholine regulatory axis in human leukemic T cells. Int J Immunopathol Pharmacol 2009; 22: 461–472.

    Article  CAS  Google Scholar 

  6. Arredondo J, Omelchenko DM, Chernyavsky AI, Qian J, Skok M, Grando SA . Functional role of the nicotinic arm of the acetylcholine regulatory axis in human B-cell lines. J Exp Pharmacol 2009; 1: 1–7.

    Article  CAS  Google Scholar 

  7. Rinner I, Kawashima K, Schauenstein K . Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation. J Neuroimmunol 1998; 81: 31–37.

    Article  CAS  Google Scholar 

  8. Fujii T, Tajima S, Yamada S, Watanabe Y, Sato KZ, Matsui M et al. Constitutive expression of mRNA for the same choline acetyltransferase as that in the nervous system, an acetylcholine-synthesizing enzyme, in human leukemic T-cell lines. Neurosci Lett 1999; 259: 71–74.

    Article  CAS  Google Scholar 

  9. Neumann S, Razen M, Habermehl P, Meyer CU, Zepp F, Kirkpatrick CJ et al. The non-neuronal cholinergic system in peripheral blood cells: effects of nicotinic and muscarinic receptor antagonists on phagocytosis, respiratory burst and migration. Life Sci 2007; 80: 2361–2364.

    Article  CAS  Google Scholar 

  10. Kawashima K, Fujii T . Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 2000; 86: 29–48.

    Article  CAS  Google Scholar 

  11. Steinbach JH . Mechanism of action of the nicotinic acetylcholine receptor. In: Bock G, Marsh J (eds). The Biology Of Nicotine Dependence (Meeting, London, England, UK, 7–9 November 1989) vol. 152. John Wiley and Sons Ltd: New York, 1990, pp 53–61.

    Google Scholar 

  12. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW . Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269: 1692–1696.

    Article  CAS  Google Scholar 

  13. Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C et al. Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 1998; 26: 198–216.

    Article  CAS  Google Scholar 

  14. Leonard S, Bertrand D . Neuronal nicotinic receptors: from structure to function. Nicotine Tob Res 2001; 3: 203–223.

    Article  CAS  Google Scholar 

  15. Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J . a10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 2001; 98: 3501–3506.

    Article  CAS  Google Scholar 

  16. Bonner TI . New subtypes of muscarinic acetylcholine receptors. Trends Pharmacol Sci 1989 (Suppl): 11–15.

  17. Mei L, Roeske WR, Yamamura HI . Molecular pharmacology of muscarinic receptor heterogeneity. Life Sci 1989; 45: 1831–1852.

    Article  CAS  Google Scholar 

  18. Caulfield MP . Muscarinic receptors characterization coupling and function. Pharmacol Ther 1993; 58: 319–379.

    Article  CAS  Google Scholar 

  19. Lukas RJ . Neuronal nicotinic acetylcholine receptors. In: Barrantes FJ (ed). The Nicotinic Acetylcholine Receptor. Current Views and Future Trends. Springer: Basel, 1998, pp 145–173.

    Chapter  Google Scholar 

  20. Lindstrom J, Peng AR, Gerzanich V . Neuronal nicotinic receptor structure and function. In: Clarke PBS, Quik M, Adlkofer F, Thurau K (eds). Effects of Nicotine on Biological Systems. Birkhäuser: Basel, 1995, pp 45–50.

    Chapter  Google Scholar 

  21. Grando SA, Pittelkow MR, Schallreuter KU . Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 2006; 126: 1948–1965.

    Article  CAS  Google Scholar 

  22. Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T . Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol 2009; 183: 6681–6688.

    Article  CAS  Google Scholar 

  23. Fujii YX, Fujigaya H, Moriwaki Y, Misawa H, Kasahara T, Grando SA et al. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. J Neuroimmunol 2007; 189: 69–74.

    Article  CAS  Google Scholar 

  24. Fujii YX, Tashiro A, Arimoto K, Fujigaya H, Moriwaki Y, Misawa H et al. Diminished antigen-specific IgG1 and interleukin-6 production and acetylcholinesterase expression in combined M1 and M5 muscarinic acetylcholine receptor knockout mice. J Neuroimmunol 2007; 188: 80–85.

    Article  CAS  Google Scholar 

  25. Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S . Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 2003; 107: 604–611.

    Article  CAS  Google Scholar 

  26. Hallquist N, Hakki A, Wecker L, Friedman H, Pross S . Differential effects of nicotine and aging on splenocyte proliferation and the production of Th1- versus Th2-type cytokines. Proc Soc Exp Biol Med 2000; 224: 141–146.

    Article  CAS  Google Scholar 

  27. De Rosa MJ, Esandi Mdel C, Garelli A, Rayes D, Bouzat C . Relationship between alpha 7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol 2005; 160: 154–161.

    Article  CAS  Google Scholar 

  28. Vincler M, Vetter DE, McIntosh M . a9a10 and a7 nicotinic acetylcholine receptors have opposite roles in the immune response to peripheral nerve injury. Biochem Pharmacol 2007; 74: SMA49 (5.1).

  29. Kuo Y, Lucero L, Michaels J, DeLuca D, Lukas RJ . Differential expression of nicotinic acetylcholine receptor subunits in fetal and neonatal mouse thymus. J Neuroimmunol 2002; 130: 140–154.

    Article  CAS  Google Scholar 

  30. Rossi A, Tria MA, Baschieri S, Doria G, Frasca D . Cholinergic agonists selectively induce proliferative responses in the mature subpopulation of murine thymocytes. J Neurosci Res 1989; 24: 369–373.

    Article  CAS  Google Scholar 

  31. Fujii T, Watanabe Y, Inoue T, Kawashima K . Upregulation of mRNA encoding the M5 muscarinic acetylcholine receptor in human T- and B-lymphocytes during immunological responses. Neurochem Res 2003; 28: 423–429.

    Article  CAS  Google Scholar 

  32. Kawashima K, Fujii T . The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 2003; 74: 675–696.

    Article  CAS  Google Scholar 

  33. Paldi-Haris P, Szelenyi JG, Nguyen TH, Hollan SR . Changes in the expression of the cholinergic structures of human T lymphocytes due to maturation and stimulation. Thymus 1990; 16: 119–122.

    CAS  PubMed  Google Scholar 

  34. Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T . Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 2006; 50: 540–547.

    Article  CAS  Google Scholar 

  35. Wess J . Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 1996; 10: 69–99.

    Article  CAS  Google Scholar 

  36. Quik M, Philie J, Choremis J . Modulation of a7 nicotinic receptor-mediated calcium influx by nicotinic agonists. Mol Pharmacol 1997; 51: 499–506.

    CAS  PubMed  Google Scholar 

  37. Fenster CP, Beckman ML, Parker JC, Sheffield EB, Whitworth TL, Quick MW et al. Regulation of a4b2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 1999; 55: 432–443.

    CAS  PubMed  Google Scholar 

  38. Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ . Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol 2009; 182: 1730–1739.

    Article  CAS  Google Scholar 

  39. Sonenberg N, Hershey JWB, Mathews MB . Translational Control of Gene Expression 2nd edn, vol. 39. Cold Spring Harbor Laboratory Press: New York, 2000.

    Google Scholar 

  40. Ndoye A, Buchli R, Greenberg B, Nguyen VT, Zia S, Rodriguez JG et al. Identification and mapping of keratinocyte muscarinic acetylcholine receptor subtypes in human epidermis. J Invest Dermatol 1998; 111: 410–416.

    Article  CAS  Google Scholar 

  41. Nguyen VT, Ndoye A, Hall LL, Zia S, Arredondo J, Chernyavsky AI et al. Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. J Cell Sci 2001; 114 (Part): 1189–1204.

    CAS  PubMed  Google Scholar 

  42. Arredondo J, Hall LH, Ndoye A, Nguyen VT, Chernyavsky AI, Bercovich D et al. Central role of fibroblast a3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine. Lab Invest 2003; 83: 207–225.

    Article  CAS  Google Scholar 

  43. Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA . Receptor-mediated tobacco toxicity: acceleration of sequential expression of a5 and a7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008; 22: 1356–1368.

    Article  CAS  Google Scholar 

  44. Kues WA, Sakmann B, Witzemann V . Differential expression patterns of five acetylcholine receptor subunit genes in rat muscle during development. Eur J Neurosci 1995; 7: 1376–1385.

    Article  CAS  Google Scholar 

  45. Bairam A, Joseph V, Lajeunesse Y, Kinkead R . Developmental profile of cholinergic and purinergic traits and receptors in peripheral chemoreflex pathway in cats. Neuroscience 2007; 146: 1841–1853.

    Article  CAS  Google Scholar 

  46. Kikuchi H, Itoh J, Fukuda S . Chronic nicotine stimulation modulates the immune response of mucosal T cells to Th1-dominant pattern via nAChR by upregulation of Th1-specific transcriptional factor. Neurosci Lett 2008; 432: 217–221.

    Article  CAS  Google Scholar 

  47. Sopori M . Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002; 2: 372–377.

    Article  CAS  Google Scholar 

  48. Nomura J, Hosoi T, Okuma Y, Nomura Y . The presence and functions of muscarinic receptors in human T cells: the involvement in IL-2 and IL-2 receptor system. Life Sci 2003; 72: 2121–2126.

    Article  CAS  Google Scholar 

  49. Razani-Boroujerdi S, Boyd RT, Davila-Garcia MI, Nandi JS, Mishra NC, Singh SP et al. T cells express alpha7-nicotinic acetylcholine receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response. J Immunol 2007; 179: 2889–2898.

    Article  CAS  Google Scholar 

  50. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O′Garra A . 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 2001; 167: 4974–4980.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Grando.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Presented in part at the 69th Annual Meeting of the Society for Investigative Dermatology, Montreal, Canada, May 6–9, 2009, and published in the form of an abstract in J Invest Dermatol 2009; 129 (Suppl. 1): S108, Abstr. #644.

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Galitovskiy, V., Chernyavsky, A. et al. Plasticity of the murine spleen T-cell cholinergic receptors and their role in in vitro differentiation of naïve CD4 T cells toward the Th1, Th2 and Th17 lineages. Genes Immun 12, 222–230 (2011). https://doi.org/10.1038/gene.2010.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.72

Keywords

This article is cited by

Search

Quick links