Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The PTPN22gain-of-function+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis

Abstract

Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) inhibits T-cell activation and interleukin-2 (IL-2) production. The PTPN22gain-of-function+1858T(+) genotypes predispose to multiple autoimmune diseases, including early-onset (non-thymomatous) myasthenia gravis (MG). The disease association and the requirement of IL-2/IL-2 receptor signaling for intrathymic, negative T-cell selection have suggested that these genotypes may weaken T-cell receptor (TCR) signaling and impair the deletion of autoreactive T cells. Evidence for this hypothesis is missing. Thymoma-associated MG, which depends on intratumorous generation and export of mature autoreactive CD4(+) T cells, is a model of autoimmunity because of central tolerance failure. Here, we analyzed the PTPN22 +1858C/T single nucleotide polymorphism in 426 German Caucasian individuals, including 125 thymoma patients (79 with MG), and investigated intratumorous IL-2 expression levels. Unlike two previous studies on French and Swedish patients, we found strong association of PTPN22 +1858T(+) genotypes not only with early-onset MG (P=0.00034) but also with thymoma-associated MG (P=0.0028). IL-2 expression in thymomas with PTPN22 +1858T(+) genotypes (P=0.028) was lower, implying weaker TCR signaling. We conclude that the PTPN22gain-of-function variant biases towards MG in a subgroup of thymoma patients possibly by impeding central tolerance induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Marx A, Müller-Hermelink HK, Ströbel P . The role of thymomas in the development of myasthenia gravis. Ann N Y Acad Sci 2003; 998: 223–236.

    Article  Google Scholar 

  2. Willcox N, Schluep M, Ritter MA, Schuurman HJ, Newsom-Davis J, Christensson B . Myasthenic and non-myasthenic thymoma. An expansion of a minor cortical epithelial cell subset? Am J Pathol 1987; 127: 447–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ströbel P, Murumägi A, Klein R, Luster M, Lahti M, Krohn K et al. Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1). J Pathol 2007; 211: 563–571.

    Article  Google Scholar 

  4. Chuang WY, Ströbel P, Gold R, Nix W, Schalke B, Kiefer R et al. A CTLA4high genotype is associated with myasthenia gravis in thymoma patients. Ann Neurol 2005; 58: 644–648.

    Article  CAS  Google Scholar 

  5. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    Article  CAS  Google Scholar 

  6. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    Article  CAS  Google Scholar 

  7. Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53: 3020–3023.

    Article  CAS  Google Scholar 

  8. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  Google Scholar 

  9. Zheng W, She JX . Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes 2005; 54: 906–908.

    Article  CAS  Google Scholar 

  10. Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VE et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75: 504–507.

    Article  CAS  Google Scholar 

  11. Michou L, Lasbleiz S, Rat AC, Migliorini P, Balsa A, Westhovens R et al. Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc Natl Acad Sci USA 2007; 104: 1649–1654.

    Article  CAS  Google Scholar 

  12. Vandiedonck C, Capdevielle C, Giraud M, Krumeich S, Jais JP, Eymard B et al. Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Ann Neurol 2006; 59: 404–407.

    Article  CAS  Google Scholar 

  13. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG, Nath SK et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford) 2007; 46: 49–56.

    Article  CAS  Google Scholar 

  14. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005; 37: 1317–1319.

    Article  CAS  Google Scholar 

  15. Bassiri H, Carding SR . A requirement for IL-2/IL-2 receptor signaling in intrathymic negative selection. J Immunol 2001; 166: 5945–5954.

    Article  CAS  Google Scholar 

  16. Lefvert AK, Zhao Y, Ramanujam R, Yu S, Pirskanen R, Hammarström L . PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 2008; 197: 110–113.

    Article  CAS  Google Scholar 

  17. Anjos S, Nguyen A, Ounissi-Benkalha H, Tessier MC, Polychronakos C . A common autoimmunity predisposing signal peptide variant of the cytotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. J Biol Chem 2002; 277: 46478–46486.

    Article  CAS  Google Scholar 

  18. Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ . CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves' disease. J Immunol 2000; 165: 6606–6611.

    Article  CAS  Google Scholar 

  19. Ströbel P, Helmreich M, Menioudakis G, Lewin SR, Rüdiger T, Bauer A et al. Paraneoplastic myasthenia gravis correlates with generation of mature naive CD4(+) T cells in thymomas. Blood 2002; 100: 159–166.

    Article  Google Scholar 

  20. Buckley C, Douek D, Newsom-Davis J, Vincent A, Willcox N . Mature, long-lived CD4+ and CD8+ T cells are generated by the thymoma in myasthenia gravis. Ann Neurol 2001; 50: 64–72.

    Article  CAS  Google Scholar 

  21. Hoffacker V, Schultz A, Tiesinga JJ, Gold R, Schalke B, Nix W et al. Thymomas alter the T-cell subset composition in the blood: a potential mechanism for thymoma-associated autoimmune disease. Blood 2000; 96: 3872–3879.

    CAS  PubMed  Google Scholar 

  22. Buhlmann JE, Elkin SK, Sharpe AH . A role for the B7-1/B7-2:CD28/CTLA-4 pathway during negative selection. J Immunol 2003; 170: 5421–5428.

    Article  CAS  Google Scholar 

  23. Kwon H, Jun HS, Khil LY, Yoon JW . Role of CTLA-4 in the activation of single- and double-positive thymocytes. J Immunol 2004; 173: 6645–6653.

    Article  CAS  Google Scholar 

  24. Matthews RJ, Bowne DB, Flores E, Thomas ML . Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 1992; 12: 2396–2405.

    Article  CAS  Google Scholar 

  25. Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM . Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 1999; 93: 2013–2024.

    CAS  Google Scholar 

  26. Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J et al. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 2006; 281: 11002–11010.

    Article  CAS  Google Scholar 

  27. Fend F, Kirchner T, Marx A, Müller-Hermelink HK . B-cells in thymic epithelial tumours. An immunohistochemical analysis of intra- and extraepithelial B-cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1993; 63: 241–247.

    Article  CAS  Google Scholar 

  28. Giraud M, Taubert R, Vandiedonck C, Ke X, Lévi-Strauss M, Pagani F et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 2007; 448: 934–937.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C Siehndel, T Pohle, and J Maar for expert technical assistance; Pärt Peterson, University of Tartu, Estonia; Nick Willcox, University of Oxford; and Henri-Jean Garchon, University Paris-Descartes for critical comments. This study was supported by European Union Grants LSHB-CT-2003-503410 (Euro-Thymaide) and No. 2005105 (European Myasthenia Gravis Network) (to AM and PS); and by Grant 106430 of the Deutsche Krebshilfe (to HK M-H, PS, and AM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Marx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, WY., Ströbel, P., Belharazem, D. et al. The PTPN22gain-of-function+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes Immun 10, 667–672 (2009). https://doi.org/10.1038/gene.2009.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.64

Keywords

This article is cited by

Search

Quick links