Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The rat antigen-presenting lectin-like receptor complex influences innate immunity and development of infectious diseases

Abstract

Genetic variation in the antigen-presenting lectin-like receptor gene complex (APLEC) associates with autoimmunity and arthritis in rats and humans. We hypothesized that the encoded C-type lectin-like receptors might influence innate immunity and responses to infectious agents. To test this hypothesis, we compared in vivo and in vitro phenotypes in DA rats and APLEC-congenic rats. Survival rates following infection with Staphylococcus aureus and Herpes simplex virus differed significantly between the two strains. Likewise, differential delayed type hypersensitivity (DTH), an immunological reaction involving T lymphocytes and macrophages, was observed in response to provocation with the chemical oxazolone. Unstimulated bone marrow-derived macrophages from the two strains appeared to already have polarized activation states with different mRNA levels of CD163 and Dectin-1 receptors. Following stimulation with a panel of microbial agents, differences in induced mRNA and protein levels were shown for interleukin (IL)-6 and IL-10 following stimulation with lipopolysaccharide, mannan and β-glucan. Expression levels of APLEC gene mRNAs also differed, and both strains had a notably dichotomous expression of the genes, with general downregulation of all four Dcir genes and upregulation of Mincle and Mcl. We suggest that human APLEC genes may similarly regulate infectious diseases, DTH and general macrophage activation status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Josefsson E, Tarkowski A . Staphylococcus aureus-induced inflammation and bone destruction in experimental models of septic arthritis. J Periodontal Res 1999; 34: 387–392.

    Article  CAS  Google Scholar 

  2. Whitley RJ . Herpes simplex encephalitis: adolescents and adults. Antiviral Res 2006; 71: 141–148.

    Article  CAS  Google Scholar 

  3. Sancho-Shimizu V, Zhang SY, Abel L, Tardieu M, Rozenberg F, Jouanguy E et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr Opin Allergy Clin Immunol 2007; 7: 495–505.

    Article  CAS  Google Scholar 

  4. Tarkowski A, Collins LV, Gjertsson I, Hultgren OH, Jonsson IM, Sakiniene E et al. Model systems: modeling human staphylococcal arthritis and sepsis in the mouse. Trends Microbiol 2001; 9: 321–326.

    Article  CAS  Google Scholar 

  5. Guo JP, Backdahl L, Marta M, Mathsson L, Ronnelid J, Lorentzen JC . Profound and paradoxical impact on arthritis and autoimmunity of the rat antigen-presenting lectin-like receptor complex. Arthritis Rheum 2008; 58: 1343–1353.

    Article  CAS  Google Scholar 

  6. Lorentzen JC, Flornes L, Eklow C, Backdahl L, Ribbhammar U, Guo JP et al. Association of arthritis with a gene complex encoding C-type lectin-like receptors. Arthritis Rheum 2007; 56: 2620–2632.

    Article  CAS  Google Scholar 

  7. Flornes LM, Bryceson YT, Spurkland A, Lorentzen JC, Dissen E, Fossum S . Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 2004; 56: 506–517.

    Article  CAS  Google Scholar 

  8. Weis WI, Taylor ME, Drickamer K . The C-type lectin superfamily in the immune system. Immunol Rev 1998; 163: 19–34.

    Article  CAS  Google Scholar 

  9. Kanazawa N . Dendritic cell immunoreceptors: C-type lectin receptors for pattern-recognition and signaling on antigen-presenting cells. J Dermatol Sci 2007; 45: 77–86.

    Article  CAS  Google Scholar 

  10. Kanazawa N, Tashiro K, Inaba K, Miyachi Y . Dendritic cell immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an activating receptor through association with Fc receptor gamma chain. J Biol Chem 2003; 278: 32645–32652.

    Article  CAS  Google Scholar 

  11. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T . Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 2008; 9: 1179–1188.

    Article  CAS  Google Scholar 

  12. Josefsson E, Carlsten H, Tarkowski A . Neutrophil mediated inflammatory response in murine lupus. Autoimmunity 1993; 14: 251–257.

    Article  CAS  Google Scholar 

  13. Verdrengh M, Tarkowski A . Riboflavin in innate and acquired immune responses. Inflamm Res 2005; 54: 390–393.

    Article  CAS  Google Scholar 

  14. Vincendeau P, Gobert AP, Daulouede S, Moynet D, Mossalayi MD . Arginases in parasitic diseases. Trends Parasitol 2003; 19: 9–12.

    Article  CAS  Google Scholar 

  15. Andersson A, Kokkola R, Wefer J, Erlandsson-Harris H, Harris RA . Differential macrophage expression of IL-12 and IL-23 upon innate immune activation defines rat autoimmune susceptibility. J Leukoc Biol 2004; 76: 1118–1124.

    Article  CAS  Google Scholar 

  16. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM . M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164: 6166–6173.

    Article  CAS  Google Scholar 

  17. Haddad F, Zaldivar F, Cooper DM, Adams GR . IL-6-induced skeletal muscle atrophy. J Appl Physiol 2005; 98: 911–917.

    Article  CAS  Google Scholar 

  18. Park JY, Pillinger MH . Interleukin-6 in the pathogenesis of rheumatoid arthritis. Bull NYU Hosp Jt Dis 2007; 65 (Suppl 1): S4–S10.

    PubMed  Google Scholar 

  19. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 1998; 101: 311–320.

    Article  CAS  Google Scholar 

  20. Tilg H, Dinarello CA, Mier JW . IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today 1997; 18: 428–432.

    Article  CAS  Google Scholar 

  21. Yadav M, Schorey JS . The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 2006; 108: 3168–3175.

    Article  CAS  Google Scholar 

  22. Schaer CA, Vallelian F, Imhof A, Schoedon G, Schaer DJ . Heme carrier protein (HCP-1) spatially interacts with the CD163 hemoglobin uptake pathway and is a target of inflammatory macrophage activation. J Leukoc Biol 2008; 83: 325–333.

    Article  CAS  Google Scholar 

  23. Lorentzen JC, Klareskog L . Susceptibility of DA rats to arthritis induced with adjuvant oil or rat collagen is determined by genes both within and outside the major histocompatibility complex. Scand J Immunol 1996; 44: 592–598.

    Article  CAS  Google Scholar 

  24. Lorentzen JC, Glaser A, Jacobsson L, Galli J, Fakhrai-rad H, Klareskog L et al. Identification of rat susceptibility loci for adjuvant-oil-induced arthritis. Proc Natl Acad Sci USA 1998; 95: 6383–6387.

    Article  CAS  Google Scholar 

  25. Lorentzen JC . Identification of arthritogenic adjuvants of self and foreign origin. Scand J Immunol 1999; 49: 45–50.

    Article  CAS  Google Scholar 

  26. Holmdahl R, Lorentzen JC, Lu S, Olofsson P, Wester L, Holmberg J et al. Arthritis induced in rats with nonimmunogenic adjuvants as models for rheumatoid arthritis. Immunol Rev 2001; 184: 184–202.

    Article  CAS  Google Scholar 

  27. Bereczky-Veress B, Lidman O, Sabri F, Bednar I, Granath F, Bergstrom T et al. Host strain-dependent difference in susceptibility in a rat model of herpes simplex type 1 encephalitis. J Neurovirol 2008; 14: 102–118.

    Article  CAS  Google Scholar 

  28. Jennische E, Bergstrom T, Johansson M, Nystrom K, Tarkowski A, Hansson HA et al. The peptide AF-16 abolishes sickness and death at experimental encephalitis by reducing increase of intracranial pressure. Brain Res 2008; 1227: 189–197.

    Article  CAS  Google Scholar 

  29. Couper KN, Blount DG, Riley EM . IL-10: the master regulator of immunity to infection. J Immunol 2008; 180: 5771–5777.

    Article  CAS  Google Scholar 

  30. Stout RD, Suttles J . Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004; 76: 509–513.

    Article  CAS  Google Scholar 

  31. Bianchi ME . DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81: 1–5.

    Article  CAS  Google Scholar 

  32. Brown MG, Scalzo AA . NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 2008; 20: 361–368.

    Article  CAS  Google Scholar 

  33. Chung JW, Yoon SR, Choi I . The regulation of NK cell function and development. Front Biosci 2008; 13: 6432–6442.

    Article  CAS  Google Scholar 

  34. Long EO . Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 2008; 224: 70–84.

    Article  CAS  Google Scholar 

  35. Blom T, Franzen A, Heinegard D, Holmdahl R . Comment on ‘The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease’. Science 2003; 299: 1845; author reply 1845.

    Article  CAS  Google Scholar 

  36. Backdahl L, Guo JP, Jagodic M, Becanovic K, Ding B, Olsson T et al. Definition of arthritis candidate risk genes by combining rat linkage-mapping results with human case control association data. Ann Rheum Dis; published online 23 December 2008; doi:10.1136/ard.2008.090803.

    Article  Google Scholar 

  37. Jagodic M, Marta M, Becanovic K, Sheng JR, Nohra R, Olsson T et al. Resolution of a 16.8-Mb autoimmunity-regulating rat chromosome 4 region into multiple encephalomyelitis quantitative trait loci and evidence for epistasis. J Immunol 2005; 174: 918–924.

    Article  CAS  Google Scholar 

  38. Fujikado N, Saijo S, Yonezawa T, Shimamori K, Ishii A, Sugai S et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 2008; 14: 176–180.

    Article  CAS  Google Scholar 

  39. Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB, Blanchard H . Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 2008; 18: 679–685.

    Article  CAS  Google Scholar 

  40. Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ . The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 2008; 112: 1299–1307.

    Article  CAS  Google Scholar 

  41. Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ, Punt CJ, Figdor CG, de Vries IJ et al. Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-alpha production. Blood 2008; 111: 4245–4253.

    Article  CAS  Google Scholar 

  42. Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 2008; 180: 7404–7413.

    Article  CAS  Google Scholar 

  43. Eklow C, Makrygiannakis D, Backdahl L, Padyukov L, Ulfgren AK, Lorentzen JC et al. Cellular distribution of the C-type II lectin DCIR and its expression in the rheumatic joint identification of a subpopulation of DCIR+ T cells. Ann Rheum Dis 2008; 67: 1742–1749.

    Article  CAS  Google Scholar 

  44. Ronninger M, Eklow C, Lorentzen JC, Klareskog L, Padyukov L . Differential expression of transcripts for the autoimmunity-related human dendritic cell immunoreceptor. Genes Immun 2008; 9: 412–418.

    Article  CAS  Google Scholar 

  45. Bremell T, Lange S, Yacoub A, Ryden C, Tarkowski A . Experimental Staphylococcus aureus arthritis in mice. Infect Immun 1991; 59: 2615–2623.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Namvar L, Olofsson S, Bergstrom T, Lindh M . Detection and typing of Herpes Simplex virus (HSV) in mucocutaneous samples by TaqMan PCR targeting a gB segment homologous for HSV types 1 and 2. J Clin Microbiol 2005; 43: 2058–2064.

    Article  CAS  Google Scholar 

  47. Jennische E, Johansson E, Hansson HA, Jonson I . Immunohistochemical staining patterns using epitope-specific antibodies indicate conformation variants of antisecretory factor/S5a in the CNS. APMIS 2006; 114: 529–538.

    Article  CAS  Google Scholar 

  48. Carlsten H, Nilsson LA, Tarkowski A . Impaired cutaneous delayed-type hypersensitivity in autoimmune MRL lpr/lpr mice. Int Arch Allergy Appl Immunol 1986; 81: 322–325.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Swedish Research Council, the Swedish Rheumatism Association, King Gustav V's 80th Birthday Jubilee Foundation, and the FP6 EU-project AutoCure LSHB-CT-2006-018661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Lorentzen.

Additional information

Conflict of interest

The authors have no financial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Verdrengh, M., Tarkowski, A. et al. The rat antigen-presenting lectin-like receptor complex influences innate immunity and development of infectious diseases. Genes Immun 10, 227–236 (2009). https://doi.org/10.1038/gene.2009.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.4

Keywords

This article is cited by

Search

Quick links