Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure

Abstract

Acute renal failure is an abrupt decrease in renal function. Interleukin (IL)-10 inhibits ischemic and cisplatin-induced acute renal failure. We aimed to determine whether IL-20 affects renal tubular epithelial cells and is associated with acute renal failure. We analyzed the expression of IL-20 and its receptor (R) in the kidneys of rats with HgCl2-induced acute renal failure. Reverse transcription-PCR showed upregulated IL-20, and its receptors and immunohistochemical staining showed strongly expressed IL-20 protein in proximal tubular epithelial cells. We analyzed human proximal tubular epithelial (HK-2) cells, which expressed both IL-20 and its receptors. IL-20 specifically induced mitochondria-dependent apoptosis by activating caspase 9 in HK-2 cells. IL-20 also activated c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2, the downstream signals implicated in the apoptosis of HK-2 cells. Furthermore, IL-20 upregulated the transcripts of transforming growth factor (TGF)-β1, a critical mediator of renal injury. In hypoxic HK-2 cells, IL-20 and IL-22R1 transcripts increased, and IL-20 upregulated IL-1β transcripts. In vivo study further demonstrated that anti-IL-20 antibody reduced the expression of TGF-β1 and IL-1β and the number of damaged tubular cells in the kidneys of rats with acute renal failure. We concluded that IL-20 may be involved in the injury of renal epithelial cells in acute renal failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB . Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22: 929–979.

    Article  CAS  Google Scholar 

  2. Hsing CH, Ho CL, Chang LY, Lee YL, Chuang SS, Chang MS . Tissue microarray analysis of interleukin-20 expression. Cytokine 2006; 35: 44–52.

    Article  CAS  Google Scholar 

  3. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 2002; 277: 47517–47523.

    Article  CAS  Google Scholar 

  4. Hsieh MY, Chen WY, Jiang MJ, Cheng BC, Huang TY, Chang MS . Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 2006; 7: 234–242.

    Article  CAS  Google Scholar 

  5. Chen WY, Cheng BC, Jiang MJ, Hsieh MY, Chang MS . IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2006; 26: 2090–2095.

    Article  CAS  Google Scholar 

  6. Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, Chin LS et al. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 2006; 54: 2722–2733.

    Article  CAS  Google Scholar 

  7. Wei CC, Chen WY, Wang YC, Chen PJ, Lee JY, Wong TW et al. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 2005; 117: 65–72.

    Article  CAS  Google Scholar 

  8. Rana A, Sathyanarayana P, Lieberthal W . Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis 2001; 6: 83–102.

    Article  CAS  Google Scholar 

  9. Lieberthal W, Koh JS, Levine JS . Necrosis and apoptosis in acute renal failure. Semin Nephrol 1998; 18: 505–518.

    CAS  PubMed  Google Scholar 

  10. Devarajan P . Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 2006; 17: 1503–1520.

    Article  CAS  Google Scholar 

  11. Yamada T . [Studies on the mechanisms of renal damages induced by nephrotoxic compounds]. Nihon Hoigaku Zasshi 1995; 49: 447–457.

    CAS  PubMed  Google Scholar 

  12. Liu XY, Jin TY, Nordberg GF . Increased urinary calcium and magnesium excretion in rats injected with mercuric chloride. Pharmacol Toxicol 1991; 68: 254–259.

    Article  CAS  Google Scholar 

  13. Chaudhari A, Kirschenbaum MA . Alterations in rabbit renal microvascular prostanoid synthesis in acute renal failure. Am J Physiol 1988; 254: F684–F688.

    Article  CAS  Google Scholar 

  14. Ho AS, Moore KW . Interleukin-10 and its receptor. Ther Immunol 1994; 1: 173–185.

    CAS  Google Scholar 

  15. Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 2001; 60: 2118–2128.

    Article  CAS  Google Scholar 

  16. Okusa MD . The inflammatory cascade in acute ischemic renal failure. Nephron 2002; 90: 133–138.

    Article  CAS  Google Scholar 

  17. Lazzeri M . The physiological function of the urothelium—more than a simple barrier. Urol Int 2006; 76: 289–295.

    Article  Google Scholar 

  18. Ghielli M, Verstrepen W, Nouwen E, De Broe ME . Regeneration processes in the kidney after acute injury: role of infiltrating cells. Exp Nephrol 1998; 6: 502–507.

    Article  CAS  Google Scholar 

  19. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 2001; 104: 9–19.

    Article  CAS  Google Scholar 

  20. Hsing CH, Chiu CJ, Chang LY, Hsu CC, Chang MS . IL-19 in involved in the pathogenesis of endotoxic shock. Shock 2008; 29: 7–15.

    CAS  PubMed  Google Scholar 

  21. Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Lebedeva IV, Dent P et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev 2003; 14: 35–51.

    Article  CAS  Google Scholar 

  22. Aggarwal S, Takada Y, Mhashilkar AM, Sieger K, Chada S, Aggarwal BB . Melanoma differentiation-associated gene-7/IL-24 gene enhances NF-kappa B activation and suppresses apoptosis induced by TNF. J Immunol 2004; 173: 4368–4376.

    Article  CAS  Google Scholar 

  23. Khan S, Cleveland RP, Koch CJ, Schelling JR . Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab Invest 1999; 79: 1089–1099.

    CAS  PubMed  Google Scholar 

  24. Hauser P, Oberbauer R . Tubular apoptosis in the pathophysiology of renal disease. Wien Klin Wochenschr 2002; 114: 671–677.

    CAS  PubMed  Google Scholar 

  25. Miyazawa K, Suzuki K, Ikeda R, Moriyama MT, Ueda Y, Katsuda S . Apoptosis and its related genes in renal epithelial cells of the stone-forming rat. Urol Res 2005; 33: 31–38.

    Article  CAS  Google Scholar 

  26. Edelstein CL . What is the role of tubular epithelial cell apoptosis in polycystic kidney disease (PKD)? Cell Cycle 2005; 4: 1550–1554.

    Article  CAS  Google Scholar 

  27. Kim YK, Kim HJ, Kwon CH, Kim JH, Woo JS, Jung JS et al. Role of ERK activation in cisplatin-induced apoptosis in OK renal epithelial cells. J Appl Toxicol 2005; 25: 374–382.

    Article  CAS  Google Scholar 

  28. Zhuang S, Yan Y, Daubert RA, Han J, Schnellmann RG . ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am J Physiol 2007; 292: F440–F447.

    Article  CAS  Google Scholar 

  29. Kunduzova OR, Bianchi P, Pizzinat N, Escourrou G, Seguelas MH, Parini A et al. Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemia-reperfusion. FASEB J 2002; 16: 1129–1131.

    Article  CAS  Google Scholar 

  30. Hay ED, Zuk A . Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995; 26: 678–690.

    Article  CAS  Google Scholar 

  31. Dai C, Yang J, Liu Y . Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem 2003; 278: 12537–12545.

    Article  CAS  Google Scholar 

  32. Basile DP, Rovak JM, Martin DR, Hammerman MR . Increased transforming growth factor-beta 1 expression in regenerating rat renal tubules following ischemic injury. Am J Physiol 1996; 270: F500–F509.

    Article  CAS  Google Scholar 

  33. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke T, Somerset H et al. Cisplatin-induced ARF is associated with an increase in the cytokines IL-1{beta},IL-18, IL-6 and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 2007; 322: 8–15.

    Article  CAS  Google Scholar 

  34. Otkjaer K, Kragballe K, Johansen C, Funding AT, Just H, Jensen UB et al. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms. J Invest Dermatol 2007; 127: 1326–1336.

    Article  CAS  Google Scholar 

  35. Girardi G, Elias MM . Evidence for renal ischaemia as a cause of mercuric chloride nephrotoxicity. Arch Toxicol 1995; 69: 603–607.

    Article  CAS  Google Scholar 

  36. Brezis M, Epstein FH . Cellular mechanisms of acute ischemic injury in the kidney. Annu Rev Med 1993; 44: 27–37.

    Article  CAS  Google Scholar 

  37. Wei CC, Hsu YH, Li HH, Wang YC, Hsieh MY, Chen WY et al. IL-20: biological functions and clinical implications. J Biomed Sci 2006; 13: 601–612.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-S Chang.

Additional information

This work was supported by a grant from Chi Mei Medical Center, Tainan, Taiwan.

Conflict of Interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HH., Hsu, YH., Wei, CC. et al. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun 9, 395–404 (2008). https://doi.org/10.1038/gene.2008.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.28

Keywords

This article is cited by

Search

Quick links