Na+-Ca2+ exchanger modulates Ca2+ content in intracellular Ca2+ stores in rat osteoblasts

Abstract

Na+ -Ca2+ exchanger (NCX) transports Ca2+ coupled with Na+ across the plasma membrane in a bi-directional mode. Ca2+ flux via NCX mediates osteogenic processes, such as formation of extracellular matrix proteins and bone nodules. However, it is not clearly understood how the NCX regulates cellular Ca2+ movements in osteogenic processes. In this study, the role of NCX in modulating Ca2+ content of intracellular stores ([Ca2+](ER)) was investigated by measuring intracellular Ca2+ activity in isolated rat osteoblasts. Removal of extracellular Na+ elicited a transient increase of intracellular Ca2+ concentration ([Ca2+](i)). Pretreatment of antisense oligodeoxynucleotide (AS) against NCX depressed this transient Ca2+ rise and raised the basal level of [Ca2+](i). In AS-pretreated cells, the expression and activity of alkaline phosphatase (ALP), an osteogenic marker, were decreased. However, the cell viability was not affected by AS-pretreatment. Suppression of NCX activity by the AS-pretreatment decreased ATP-activated Ca2+ release from intracellular stores and significantly enhanced Ca2+ influx via store operated calcium influx (SOCI), compared to those of S-pretreated or control cells. These results strongly suggest that NCX has a regulatory role in cellular Ca2+ pathways in osteoblasts by modulating intracellular Ca2+ content.

Author information

Affiliations

Authors

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Jung, S., Park, Y., Park, Y. et al. Na+-Ca2+ exchanger modulates Ca2+ content in intracellular Ca2+ stores in rat osteoblasts. Exp Mol Med 39, 458–468 (2007). https://doi.org/10.1038/emm.2007.50

Download citation

Keywords

  • calcium
  • osteoblasts
  • sodium-calcium exchanger

Further reading