Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proteins

Control of protein and energy intake - brain mechanisms

Abstract

The protein content of the diet has long been investigated for its influence on food behavior. High-protein diets promote satiety and reduce calorie intake, whereas results for low-protein diets are more contradictory and less established. Protein sensing might take place in the oral cavity or in the post-oral gastrointestinal tract, where specific receptors have been found. Protein signaling to the brain may act through the vagal nerve and involve gastric hormones, such as cholecystokinin and peptide YY. Other pathways are post-absorptive signaling and the direct influence of brain levels of amino acids. High-protein diet enhances the activity of brain satiety centers, mainly the nucleus of the solitary tract and arcuate nucleus, although the activity of brain reward centers might also be modified. A better understanding of the role of both homeostatic and hedonic systems is needed to fully describe the influence of protein on food intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Morrison CD, Reed SD, Henagan TM . Homeostatic regulation of protein intake: in search of a mechanism. Am J Physiol Regulat Integr Comp Physiol 2012; 302: R917–R928.

    CAS  Google Scholar 

  2. Fromentin G, Darcel N, Chaumontet C, Marsset-Baglieri A, Nadkarni N, Tomé D . Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr Res Rev 2012; 25: 29–39.

    CAS  PubMed  Google Scholar 

  3. Potier M . Caractérisation de l'effet satiétogène des protéines et mécanismes impliqués: application aux protéines laitières. Thesis Abies. Agroparistech: Paris, France, 2009; 0–154.

    Google Scholar 

  4. Peters JC, Harper AE . Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J Nutr 1985; 115: 382–398.

    CAS  PubMed  Google Scholar 

  5. Du F, Higginbotham DA, White BD . Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J Nutr 2000; 130: 514–521.

    CAS  PubMed  Google Scholar 

  6. Simpson SJ, Raubenheimer D . Obesity: the protein leverage hypothesis. Obes Rev 2005; 6: 133–142.

    CAS  PubMed  Google Scholar 

  7. Gietzen DW, Hao S, Anthony TG . Mechanisms of food intake repression in indispensable amino acid deficiency. Annu Rev Nutr 2007; 27: 63–78.

    CAS  PubMed  Google Scholar 

  8. Harper EA, Griffin EP, Shankley NP, Black JW . Analysis of the behaviour of selected CCKB/gastrin receptor antagonists in radioligand binding assays performed in mouse and rat cerebral cortex. Br J Pharmacol 1999; 126: 1496–1503.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ . An amino-acid taste receptor. Nature 2002; 416: 199–202.

    CAS  PubMed  Google Scholar 

  10. Palmer RK . The pharmacology and signaling of bitter, sweet, and umami taste sensing. Mol Interv 2007; 7: 87–98.

    CAS  PubMed  Google Scholar 

  11. de Araujo IET, Kringelbach ML, Rolls ET, Hobden P . Representation of umami tste in the human brain. J Neurophysiol 2003; 90: 313–319.

    CAS  PubMed  Google Scholar 

  12. Beauchamp GK . Sensory and receptor responses to umami: an overview of pioneering work. Am J Clin Nutr 2009; 90: 723S–727SS.

    CAS  PubMed  Google Scholar 

  13. Perez C, Ackroff K, Sclafani A . Carbohydrate- and protein-conditioned flavor preferences: effects of nutrient preloads. Physiol Behav 1996; 59: 467–474.

    CAS  PubMed  Google Scholar 

  14. Perez C, Lucas F, Sclafani A . Carbohydrate, fat, and protein condition similar flavor preferences in rats using an oral-delay procedure. Physiol Behav 1995; 57: 549–554.

    CAS  PubMed  Google Scholar 

  15. Miller MG, Teates JF . Acquisition of dietary self-selection in rats with normal and impaired oral sensation. Physiol Behav 1985; 34: 401–408.

    CAS  PubMed  Google Scholar 

  16. Nakamura E, Hasumura M, Uneyama H, Torii K . Luminal amino acid-sensing cells in gastric mucosa. Digestion 2011; 83 (Suppl 1), 13–18.

    CAS  PubMed  Google Scholar 

  17. Tome D, Schwarz J, Darcel N, Fromentin G . Protein, amino acids, vagus nerve signaling, and the brain. Am J Clin Nutr 2009; 90: 838S–843SS.

    CAS  PubMed  Google Scholar 

  18. Niijima A . Reflex effects of oral, gastrointestinal and hepatoportal glutamate sensors on vagal nerve activity. J Nutr 2000; 130: 971S–973SS.

    CAS  PubMed  Google Scholar 

  19. Chaudhari N, Landin AM, Roper SD . A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 2000; 3: 113–119.

    CAS  PubMed  Google Scholar 

  20. Blackshaw LA, Page AJ, Young RL . Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Front Neurosci 2011; 5: 40.

    PubMed  PubMed Central  Google Scholar 

  21. Faipoux R, Tome D, Gougis S, Darcel N, Fromentin G . Proteins activate satiety-related neuronal pathways in the brainstem and hypothalamus of rats. J Nutr 2008; 138: 1172–1178.

    CAS  PubMed  Google Scholar 

  22. Maljaars PW, Peters HP, Mela DJ, Masclee AA . Ileal brake: a sensible food target for appetite control. A review. Physiol Behav 2008; 95: 271–281.

    CAS  PubMed  Google Scholar 

  23. Meyer JH, Hlinka M, Tabrizi Y, DiMaso N, Raybould HE . Chemical specificities and intestinal distributions of nutrient-driven satiety. Am J Physiol 1998; 275 (4 Pt 2), R1293–R1307.

    CAS  PubMed  Google Scholar 

  24. Moran TH, Dailey MJ . Intestinal feedback signaling and satiety. Physiol Behav 2011; 105: 77–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H . Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 2006; 4: 223–233.

    CAS  PubMed  Google Scholar 

  26. Hall WL, Millward DJ, Long SJ, Morgan LM . Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr 2003; 89: 239–248.

    CAS  PubMed  Google Scholar 

  27. Bowen J, Noakes M, Clifton PM . Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J Clin Endocrinol Metab 2006; 91: 2913–2919.

    Article  CAS  PubMed  Google Scholar 

  28. Rehfeld JF . Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta Physiol (Oxford, England) 2011; 201: 405–411.

    CAS  Google Scholar 

  29. de Lartigue G, de La Serre CB, Raybould HE . Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 2011; 105: 100–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Veldhorst MA, Westerterp-Plantenga MS, Westerterp KR . Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr 2009; 90: 519–526.

    CAS  PubMed  Google Scholar 

  31. Westerterp-Plantenga MS . Protein intake and energy balance. Regul Pept 2008; 149: 67–69.

    CAS  PubMed  Google Scholar 

  32. Mellinkoff SM, Frankland M, Boyle D, Greipel M . Relationship between serum amino acid concentration and fluctuations in appetite. J Appl Physiol 1956; 8: 535–538.

    CAS  PubMed  Google Scholar 

  33. Harper AE, Peters JC . Protein intake, brain amino acid and serotonin concentrations and protein self-selection. J Nutr 1989; 119: 677–689.

    CAS  PubMed  Google Scholar 

  34. Fernstrom JD, Wurtman RJ, Hammarstrom-Wiklund B, Rand WM, Munro HN, Davidson CS . Diurnal variations in plasma concentrations of tryptophan, tryosine, and other neutral amino acids: effect of dietary protein intake. Am J Clin Nutr 1979; 32: 1912–1922.

    CAS  PubMed  Google Scholar 

  35. Choi YH, Fletcher PJ, Anderson GH . Extracellular amino acid profiles in the paraventricular nucleus of the rat hypothalamus are influenced by diet composition. Brain Res 2001; 892: 320–328.

    CAS  PubMed  Google Scholar 

  36. Nieuwenhuizen AG, Hochstenbach-Waelen A, Veldhorst MA, Westerterp KR, Engelen MP, Brummer RJ . Acute effects of breakfasts containing alpha-lactalbumin, or gelatin with or without added tryptophan, on hunger, 'satiety' hormones and amino acid profiles. Br J Nutr 2009; 101: 1859–1866.

    CAS  PubMed  Google Scholar 

  37. Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, Engelen MP, Brummer RJ . A breakfast with alpha-lactalbumin, gelatin, or gelatin+TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey, or whey-GMP. Clin Nutr 2009; 28: 147–155.

    CAS  PubMed  Google Scholar 

  38. Fernstrom JD, Fernstrom MH . Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 2007; 137: 1539S–1547SS.

    CAS  PubMed  Google Scholar 

  39. Bassil MS, Hwalla N, Obeid OA . Meal pattern of male rats maintained on histidine-, leucine-, or tyrosine-supplemented diet. Obesity (Silver Spring) 2007; 15: 616–623.

    CAS  Google Scholar 

  40. Kasaoka S, Tsuboyama-Kasaoka N, Kawahara Y, Inoue S, Tsuji M, Ezaki O . Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition 2004; 20: 991–996.

    CAS  PubMed  Google Scholar 

  41. Mercer LP . Histamine and the neuroregulation of food intake. Nutrition 1997; 13: 581–582.

    CAS  PubMed  Google Scholar 

  42. Nefti W . Les modifications de la sensibilité du nerf vague aux neuro-peptides gastro-intestinaux induites par des situations nutritionnelles chez la souris: bases cellulaires et conséquences sur le comportement alimentaire. Thesis Abies,. Agroparistech: Paris, France, 2009; 0–138.

    Google Scholar 

  43. Nefti W, Chaumontet C, Fromentin G, Tome D, Darcel N . A high-fat diet attenuates the central response to within-meal satiation signals and modifies the receptor expression of vagal afferents in mice. Am J Physiol Regul Integr Comp Physiol 2009; 296: R1681–R1686.

    CAS  PubMed  Google Scholar 

  44. Schwartz GJ . Brainstem integrative function in the central nervous system control of food intake. Forum Nutr 2010; 63: 141–151.

    CAS  PubMed  Google Scholar 

  45. Morrison CD, Berthoud HR . Neurobiology of nutrition and obesity. Nutr Rev 2007; 65 (12 Pt 1), 517–534.

    PubMed  Google Scholar 

  46. Kinzig KP, Hargrave SL, Hyun J, Moran TH . Energy balance and hypothalamic effects of a high-protein/low-carbohydrate diet. Physiol Behav 2007; 92: 454–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ropelle ER, Pauli JR, Fernandes MF, Rocco SA, Marin RM, Morari J . A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 2008; 57: 594–605.

    CAS  PubMed  Google Scholar 

  48. Newgard CB, An J, Bain JR et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9: 311–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Blouet C, Schwartz GJ . Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2010; 209: 1–12.

    CAS  PubMed  Google Scholar 

  50. Morrison CD, Xi X, White CL, Ye J, Martin RJ . Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am J Physiol Endocrinol Metab 2007; 293: E165–E171.

    CAS  PubMed  Google Scholar 

  51. Anderson SA, Tews JK, Harper AE . Dietary branched-chain amino acids and protein selection by rats. J Nutr 1990; 120: 52–63.

    CAS  PubMed  Google Scholar 

  52. Ren X, Zhou L, Terwilliger R, Newton SS, de Araujo IE . Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci 2009; 3: 12.

    PubMed  PubMed Central  Google Scholar 

  53. Hao S, Sharp JW, Ross-Inta CM et al. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 2005; 307: 1776–1778.

    CAS  PubMed  Google Scholar 

  54. Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, Cherasse Y . The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 2005; 1: 273–277.

    CAS  PubMed  Google Scholar 

  55. Russell MC, Koehnle TJ, Barrett JA, Blevins JE, Gietzen DW . The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats. Nutr Neurosci 2003; 6: 247–251.

    CAS  PubMed  Google Scholar 

  56. Leung PM, Rogers QR . Importance of prepyriform cortex in food-intake response of rats to amino acids. Am J Physiol 1971; 221: 929–935.

    CAS  PubMed  Google Scholar 

  57. McArthur LH, Kelly WF, Gietzen DW, Rogers QR . The role of palatability in the food intake response of rats fed high-protein diets. Appetite 1993; 20: 181–196.

    CAS  PubMed  Google Scholar 

  58. DiBattista D, Mercier S . Role of learning in the selection of dietary protein in the golden hamster (Mesocricetus auratus). Behav Neurosci 1999; 113: 574–586.

    CAS  PubMed  Google Scholar 

  59. Baker BJ, Booth DA, Duggan JP, Gibson EL . Protein appetite demonstated: learned specificity of protein-cue preference to protein need in adult rats. Nutr Res 1987; 7: 481–487.

    Google Scholar 

  60. Gibson EL, Wainwright CJ, Booth DA . Disguised protein in lunch after low-protein breakfast conditions food-flavor preferences dependent on recent lack of protein intake. Physiol Behav 1995; 58: 363–371.

    CAS  PubMed  Google Scholar 

  61. Griffioen-Roose S, Mars M, Siebelink E, Finlayson G, Tome D, de Graaf C . Protein status elicits compensatory changes in food intake and food preferences. Am J Clin Nutr 2012; 95: 32–38.

    CAS  PubMed  Google Scholar 

  62. Holsen LM, Zarcone JR, Thompson TI et al. Neural mechanisms underlying food motivation in children and adolescents. Neuroimage 2005; 27: 669–676.

    PubMed  Google Scholar 

  63. Goldstone AP, Prechtl de Hernandez CG, Beaver JD, Muhammed K, Croese C, Bell G . Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci 2009; 30: 1625–1635.

    PubMed  Google Scholar 

  64. Leidy HJ, Lepping RJ, Savage CR, Harris CT . Neural responses to visual food stimuli after a normal vs. higher protein breakfast in breakfast-skipping teens: a pilot fMRI study. Obesity (Silver Spring) 2011; 19: 2019–2025.

    CAS  Google Scholar 

  65. Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D . Brain responses to high-protein diets. Adv Nutr 2012; 3: 322–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Simpson SJ, Raubenheimer D . Geometric analysis of macronutrient selection in the rat. Appetite 1997; 28: 201–213.

    CAS  PubMed  Google Scholar 

  67. Sorensen A, Mayntz D, Raubenheimer D, Simpson SJ . Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. Obesity (Silver Spring) 2008; 16: 566–571.

    Google Scholar 

  68. Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR . A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 2005; 82: 41–48.

    CAS  PubMed  Google Scholar 

  69. Barkeling B, Rossner S, Bjorvell H . Effects of a high-protein meal (meat) and a high-carbohydrate meal (vegetarian) on satiety measured by automated computerized monitoring of subsequent food intake, motivation to eat and food preferences. Int J Obes 1990; 14: 743–751.

    CAS  PubMed  Google Scholar 

  70. Bensaid A, Tome D, L'Heureux-Bourdon D, Even P, Gietzen D, Morens C . A high-protein diet enhances satiety without conditioned taste aversion in the rat. Physiol Behav 2003; 78: 311–320.

    CAS  PubMed  Google Scholar 

  71. Johnson J, Vickers Z . Effects of flavor and macronutrient composition of food servings on liking, hunger and subsequent intake. Appetite 1993; 21: 25–39.

    CAS  PubMed  Google Scholar 

  72. Porrini M, Santangelo A, Crovetti R, Riso P, Testolin G, Blundell JE . Weight, protein, fat, and timing of preloads affect food intake. Physiol Behav 1997; 62: 563–570.

    CAS  PubMed  Google Scholar 

  73. Veldhorst M, Smeets A, Soenen S, Hochstenbach-Waelen A, Hursel R, Diepvens K . Protein-induced satiety: effects and mechanisms of different proteins. Physiol Behav 2008; 94: 300–307.

    CAS  PubMed  Google Scholar 

  74. Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, van Vught AJ, Westerterp KR, Engelen MP . Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav 2009; 96: 675–682.

    CAS  PubMed  Google Scholar 

  75. Jean C, Rome S, Mathe V, Huneau JF, Aattouri N, Fromentin G . Metabolic evidence for adaptation to a high protein diet in rats. J Nutr 2001; 131: 91–98.

    CAS  PubMed  Google Scholar 

  76. Pichon L, Potier M, Tome D, Mikogami T, Laplaize B, Martin-Rouas C . High-protein diets containing different milk protein fractions differently influence energy intake and adiposity in the rat. Br J Nutr 2008; 99: 739–748.

    CAS  PubMed  Google Scholar 

  77. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M . Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 2001; 124: 1720–1733.

    CAS  PubMed  Google Scholar 

  78. Gosby AK, Conigrave AD, Lau NS, Iglesias MA, Hall RM, Jebb SA . Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 2011; 6: e25929.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. White BD, He B, Dean RG, Martin RJ . Low protein diets increase neuropeptide Y gene expression in the basomedial hypothalamus of rats. J Nutr 1994; 124: 1152–1160.

    CAS  PubMed  Google Scholar 

  80. White BD, Porter MH, Martin RJ . Protein selection, food intake, and body composition in response to the amount of dietary protein. Physiol Behav 2000; 69: 383–389.

    CAS  PubMed  Google Scholar 

  81. Toyomizu M, Kimura S, Hayashi K, Tomita Y . Body protein and energy accretion in response to dietary protein level in mice from weaning to maturity. J Nutr 1989; 119: 1028–1033.

    CAS  PubMed  Google Scholar 

  82. Radcliffe JD, Webster AJ . Regulation of food intake during growth in fatty and lean female Zucker rats given diets of different protein content. Br J Nutr 1976; 36: 457–469.

    CAS  PubMed  Google Scholar 

  83. Mercer LP, Watson DF, Ramlet JS . Control of food intake in the rat by dietary protein concentration. J Nutr 1981; 111: 1117–1123.

    CAS  PubMed  Google Scholar 

  84. Harper AE, Benevenga NJ, Wohlhueter RM . Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 1970; 50: 428–558.

    CAS  PubMed  Google Scholar 

  85. Fromentin G, Gietzen DW, Nicolaidis S . Aversion-preference patterns in amino acid- or protein-deficient rats: a comparison with previously reported responses to thiamin-deficient diets. Br J Nutr 1997; 77: 299–314.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Tomé.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidenko, O., Darcel, N., Fromentin, G. et al. Control of protein and energy intake - brain mechanisms. Eur J Clin Nutr 67, 455–461 (2013). https://doi.org/10.1038/ejcn.2013.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2013.73

Keywords

This article is cited by

Search

Quick links