Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates—the good, the bad and the unknown

Abstract

Background/Objectives:

There is a critical need for improved technologies to monitor fluid balance and body composition in neonates, particularly those receiving intensive care. Bioelectrical impedance analysis meets many of the criteria required in this environment and appears to be effective for monitoring physiological trends.

Subject/Methods:

The literature regarding the use of bioelectrical impedance in neonates was reviewed.

Results:

It was found that prediction equations for total body water, extracellular water and fat-free mass have been developed, but many require further testing and validation in larger cohorts. Alternative approaches based on Hanai mixture theory or vector analysis are in the early stages of investigation in neonates.

Conclusions:

Further research is required into electrode positioning, bioimpedance spectroscopy and Cole analysis in order to realise the full potential of this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brace RA . Fluid distribution in the fetus and neonate. In: Polin RA, Fox WW (eds). Fetal and Neonatal Physiology. W.B. Saunders Co.: Philadelphia, 1992, pp 1288–1298.

    Google Scholar 

  2. Rutter N . Clinical consequences of an immature barrier. Semin Neonatol 2000; 5: 281–287.

    Article  CAS  Google Scholar 

  3. Davis ID, Avner ED . Fluid and electrolyte management. In: Fanaroff AA, Martin RJ (eds). Neonatal-Perinatal Medicine. 7th edn. Mosby Inc: St Louis, 2002, pp 619–634.

    Google Scholar 

  4. Lingwood BE, Coghlan JP, Ward LC, Charles BG, Colditz PB . Prediction of aminoglycoside distribution space in neonates by multiple frequency bioelectrical impedance analysis. Eur J Clin Pharmacol 1999; 55: 671–676.

    Article  CAS  Google Scholar 

  5. Sidhu JS, Charles BG, Triggs EJ, Tudehope DI, Gray PH, Steer PA . Assessment of bioelectrical impedance for individualizing gentamicin therapy in neonates. Eur J Clin Pharmacol 1993; 44: 253–258.

    Article  CAS  Google Scholar 

  6. Novak I, Davies PS, Elliott MJ . Noninvasive estimation of total body water in critically ill children after cardiac operations. Validation of a bioelectric impedance method. J Thorac Cardiovasc Surg 1992; 104: 585–589.

    CAS  PubMed  Google Scholar 

  7. Kleinman R (ed). Pediatric Nutrition Handbook. American Academy of Pediatrics: Elk Grove Village, IL, 2004.

  8. Dodrill P, Cleghorn G, Donovan T, Davies P . Growth patterns in preterm infants born appropriate for gestational age. J Paediatr Child Health 2008; 44: 332–337.

    Article  Google Scholar 

  9. Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR . The EPICure study: growth and associated problems in children born at 25 weeks of gestational age or less. Arch Dis Child Fetal Neonatal Ed 2003; 88: F492–F500.

    Article  CAS  Google Scholar 

  10. Ramel SE, Gray HL, Ode KL, Younge N, Georgieff MK, Demerath EW . Body composition changes in preterm infants following hospital discharge: comparison with term infants. J Pediatr Gastroenterol Nutr 2011; 53: 333–338.

    Article  Google Scholar 

  11. Roggero P, Gianni ML, Amato O, Orsi A, Piemontese P, Morlacchi L et al. Is term newborn body composition being achieved postnatally in preterm infants? Early Human Development 2009; 85: 349–352.

    Article  Google Scholar 

  12. Gianni ML, Roggero P, Mosca F . Growth and body composition in the premature infant. Minerva Pediatr 2010; 62: 83–85.

    CAS  PubMed  Google Scholar 

  13. Chomtho S, Wells JC, Williams JE, Davies PS, Lucas A, Fewtrell MS . Infant growth and later body composition: evidence from the 4-component model. Am J Clin Nutr 2008; 87: 1776–1784.

    Article  CAS  Google Scholar 

  14. Singhal A, Cole TJ, Fewtrell M, Kennedy K, Stephenson T, Elias-Jones A et al. Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation 2007; 115: 213–220.

    Article  Google Scholar 

  15. Singhal A, Fewtrell M, Cole TJ, Lucas A . Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 2003; 361: 1089–1097.

    Article  CAS  Google Scholar 

  16. Wells JC, Chomtho S, Fewtrell MS . Programming of body composition by early growth and nutrition. Proc Nutr Soc 2007; 66: 423–434.

    Article  Google Scholar 

  17. Lingwood BE, Storm van Leeuwen AM, Carberry AE, Fitzgerald EC, Callaway LK, Colditz PB et al. Prediction of fat-free mass and percentage of body fat in neonates using bioelectrical impedance analysis and anthropometric measures: validation against the PEA POD. Br J Nutr 2012; 107: 1545–1552.

    Article  CAS  Google Scholar 

  18. Bosy-Westphal A, Danielzik S, Becker C, Geisler C, Onur S, Korth O et al. Need for optimal body composition data analysis using air-displacement plethysmography in children and adolescents. J Nutr 2005; 135: 2257–2262.

    Article  CAS  Google Scholar 

  19. Fields DA, Goran MI . Body composition techniques and the four-compartment model in children. J Appl Physiol 2000; 89: 613–620.

    Article  CAS  Google Scholar 

  20. Gately PJ, Radley D, Cooke CB, Carroll S, Oldroyd B, Truscott JG et al. Comparison of body composition methods in overweight and obese children. J Appl Physiol 2003; 95: 2039–2046.

    Article  CAS  Google Scholar 

  21. National Institutes of Health. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am J Clin Nutr 1996; 64: 524S–5232S.

    Article  Google Scholar 

  22. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI . Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810–817.

    Article  CAS  Google Scholar 

  23. Mayfield SR, Uauy R, Waidelich D . Body composition of low-birth-weight infants determined by using bioelectrical resistance and reactance. Am J Clin Nutr 1991; 54: 296–303.

    Article  CAS  Google Scholar 

  24. Tang W, Ridout D, Modi N . Assessment of total body water using bioelectrical impedance analysis in neonates receiving intensive care. Arch Dis Child Fetal Neonatal Ed 1997; 77: F123–126.

    Article  CAS  Google Scholar 

  25. Lingwood BE, Coghlan JP, Ward LC, Charles BG, Colditz PB . Measurement of extracellular fluid volume in the neonate using multiple frequency bio-impedance analysis. Physiol Meas 2000; 21: 251–262.

    Article  CAS  Google Scholar 

  26. Sesmero MA, Mazariegos M, Pedron C, Jones J, Solomons NW . Bioimpedance electrical spectroscopy in the first six months of life: some methodologic considerations. Nutrition 2005; 21: 567–573.

    Article  Google Scholar 

  27. Gartner A, Sarda P, Dupuy RP, Maire B, Delpeuch F, Rieu D . Bioelectrical impedance analysis in small- and appropriate-for-gestational-age newborn infants. Eur J Clin Nutr 1994; 48: 425–432.

    CAS  PubMed  Google Scholar 

  28. Lingwood BE, Dunster KR, Ward LC . Cardiorespiratory monitoring equipment interferes with whole body impedance measurements. Physiol Meas 2005; 26: S235–240.

    Article  Google Scholar 

  29. Raghavan CV, Super DM, Chatburn RL, Savin SM, Fanaroff AA, Kalhan SC . Estimation of total body water in very-low-birth-weight infants by using anthropometry with and without bioelectrical impedance and H2[(18)O]. Am J Clin Nutr 1998; 68: 668–674.

    Article  CAS  Google Scholar 

  30. Wilson DC, Baird T, Scrimgeour CM, Halliday HL, Reid M, McClure G et al. Total body water measurement by bioelectrical impedance in the extremely low birth weight infant. Basic Life Sci 1993; 60: 185–188.

    CAS  PubMed  Google Scholar 

  31. Kushner RF, Schoeller DA, Fjeld CR, Danford L . Is the impedance index (ht2/R) significant in predicting total body water? Am J Clin Nutr 1992; 56: 835–839.

    Article  CAS  Google Scholar 

  32. Rodriguez G, Ventura P, Samper MP, Moreno L, Sarria A, Perez-Gonzalez JM . Changes in body composition during the initial hours of life in breast-fed healthy term newborns. Biol Neonate 2000; 77: 12–16.

    Article  CAS  Google Scholar 

  33. Meio MD, Sichieri R, Soares FV, Moreira ME . Total body water in small- and appropriate- for gestational age newborns. J Perinat Med 2008; 36: 354–358.

    Article  Google Scholar 

  34. Thomas BJ, Cornish BH, Ward LC . Bioelectrical impedance analysis for measurement of body fluid volumes: a review. J Clin Eng 1992; 17: 505–510.

    Article  CAS  Google Scholar 

  35. Cornish BH, Ward LC, Thomas BJ, Jebb SA, Elia M . Evaluation of multiple frequency bioelectrical impedance and Cole–Cole analysis for the assessment of body water volumes in healthy humans. Eur J Clin Nutr 1996; 50: 159–164.

    CAS  PubMed  Google Scholar 

  36. Dung NQ, Fusch G, Armbrust S, Jochum F, Fusch C . Body composition of preterm infants measured during the first months of life: bioelectrical impedance provides insignificant additional information compared to anthropometry alone. Eur J Pediatr 2007; 166: 215–222.

    Article  Google Scholar 

  37. De Lorenzo A, Andreoli A, Matthie J, Withers P . Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol 1997; 82: 1542–1558.

    Article  CAS  Google Scholar 

  38. Ferreira DM, Souza MN . Bioelectrical impedance spectroscopy for the assessment of body fluid volumes of term neonates. Braz J Med Biol Res 2004; 37: 1595–1606.

    Article  CAS  Google Scholar 

  39. Shime N, Ashida H, Chihara E, Kageyama K, Katoh Y, Yamagishi M et al. Bioelectrical impedance analysis for assessment of severity of illness in pediatric patients after heart surgery. Crit Care Med 2002; 30: 518–520.

    Article  Google Scholar 

  40. Healy GN, Lingwood BE . Reference values for whole body and cerebral multi-frequency bio-impedance data in neonates less than 12 h postpartum. Physiol Meas 2006; 27: 1177–1186.

    Article  Google Scholar 

  41. Carberry AE, Colditz PB, Lingwood BE . Body composition from birth to 4.5 months in infants born to non-obese women. Pediatr Res 2010; 68: 84–88.

    Article  Google Scholar 

  42. Lingwood BE, Healy GN, Kecskes Z, Dunster KR, Gray PH, Ward LC et al. Prediction of outcome following hypoxia/ischaemia in the human infant using cerebral impedance. Clin Neurophysiol 2009; 120: 225–230.

    Article  CAS  Google Scholar 

  43. Tang W, Ridout D, Modi N . Influence of respiratory distress syndrome on body composition after preterm birth. Arch Dis Child Fetal Neonatal Ed 1997; 77: F28–F31.

    Article  CAS  Google Scholar 

  44. Diaz-Gomez NM, Domenech E, Barroso F, Castells S, Cortabarria C, Jimenez A . The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants. Pediatrics 2003; 111: 1002–1009.

    Article  Google Scholar 

  45. Piccoli A, Fanos V, Peruzzi L, Schena S, Pizzini C, Borgione S et al. Reference values of the bioelectrical impedance vector in neonates in the first week after birth. Nutrition 2002; 18: 383–387.

    Article  Google Scholar 

  46. Piccoli A . Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) Study Group. Kidney Int 1998; 53: 1036–1043.

    Article  CAS  Google Scholar 

  47. Piccoli A, Rossi B, Pillon L, Bucciante G . A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int 1994; 46: 534–539.

    Article  CAS  Google Scholar 

  48. Piccoli A, Brunani A, Savia G, Pillon L, Favaro E, Berselli ME et al. Discriminating between body fat and fluid changes in the obese adult using bioimpedance vector analysis. Int J Obes Relat Metab Disord 1998; 22: 97–104.

    Article  CAS  Google Scholar 

  49. Savino F, Grasso G, Cresi F, Oggero R, Silvestro L . Bioelectrical impedance vector distribution in the first year of life. Nutrition 2003; 19: 492–496.

    Article  Google Scholar 

  50. Margutti AV, Monteiro JP, Camelo JS . Reference distribution of the bioelectrical impedance vector in healthy term newborns. Br J Nutr 2010; 104: 1508–1513.

    Article  CAS  Google Scholar 

  51. Savino F, Cresi F, Grasso G, Oggero R, Silvestro L . The Biagram vector: a graphical relation between reactance and phase angle measured by bioelectrical analysis in infants. Ann Nutr Metab 2004; 48: 84–89.

    Article  CAS  Google Scholar 

  52. Lingwood BE, Dunster KR, Healy GN, Colditz PB . Effect of cooling and re-warming on cerebral and whole body electrical impedance. Physiol Meas 2004; 25: 413–420.

    Article  Google Scholar 

  53. Sidhu JS, Triggs EJ, Charles BG, Tudehope DI . Electrode placement in neonatal bioelectrical impedance analysis. Med Biol Eng Comput 1994; 32: 456–459.

    Article  CAS  Google Scholar 

  54. Fjeld CR, Freundt-Thurne J, Schoeller DA . Total body water measured by 18-O dilution and bioelectrical impedance in well and malnourished children. Pediatr Res 1990; 27: 98–102.

    Article  CAS  Google Scholar 

  55. Barillas-Mury C, Vettorazzi C, Molina S, Pineda O . Experience with bioelectrical impedance analysis in young children: sources of variability. In: Ellis KJ, Yasumura S, Morgan WD (eds). In Vivo Body Composition Study. IPSM 3: London, 1987, pp 87–90.

    Google Scholar 

  56. Gartner A, Maire B, Delpeuch F, Sarda P, Dupuy RP, Rieu D . The use of bioelectrical impedance analysis in newborns. The need for standardization. Basic Life Sci 1993; 60: 165–168.

    CAS  PubMed  Google Scholar 

  57. Baker GL . Human adipose tissue composition and age. Am J Clin Nutr 1969; 22: 829–835.

    Article  CAS  Google Scholar 

  58. Ryan TJ . Development of the cutaneous circulation. In: Polin RA, Fox WW (eds). Fetal and Neonatal Physiology. W.B. Saunders Company: Philadelphia, 1992, pp 562–563.

    Google Scholar 

Download references

Acknowledgements

Publication of this article was supported by a grant from seca Gmbh & Co. KG, Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B E Lingwood.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingwood, B. Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates—the good, the bad and the unknown. Eur J Clin Nutr 67 (Suppl 1), S28–S33 (2013). https://doi.org/10.1038/ejcn.2012.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.162

Keywords

This article is cited by

Search

Quick links