Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minerals, trace elements, Vit. D and bone health

No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake

Abstract

Background/Objectives:

In vitro studies demonstrate that bone is degraded in an acidic environment due to chemical reactions and through effects on bone cells. Clinical evidence is insufficient to unequivocally resolve whether the diet net acid or base load bone affects breakdown in humans. Increasing dietary salt (sodium chloride, NaCl) mildly increases blood acidity in humans and in rats with increased sensitivity to the blood pressure effects of salt, whereas increased potassium (K) intake can decrease blood pressure. Blood pressure responses to NaCl or K may potentially be a marker for increased bone turnover or lower bone mineral density (BMD) in women at higher risk for osteoporosis and fracture.

Subjects/Methods:

We retrospectively analysed data from two data sets (California and NE Scotland) of postmenopausal women (n=266) enrolled in long-term randomized, placebo-controlled studies of the effects of administration of low- or high-dose dietary K alkali supplementation on bone turnover in relation to sodium or chloride excretion (a marker of dietary salt intake). Mean arterial pressure (MAP) was calculated from blood pressure measures, MAP was divided into tertiles and its influence on the effect of dietary NaCl and K alkali supplementation on deoxypyridinoline markers of bone resorption and BMD by DEXA was tested. Data was analysed for each data set separately and then combined.

Results:

Percentage change in BMD after 24 months was less for California compared with North East Scotland (hip: −0.6±2.8% and −1.5±2.4%, respectively (P=0.027); spine: −0.5±3.4% and −2.6±3.5%, (P<0.001). We found no effect of dietary alkali treatment on BMD change or bone resorption for either centre. Adjusting for the possible calcium- or potassium-lowering effects on blood pressure did not alter the results.

Conclusions:

Blood pressure responses to Na, Cl or K intake did not help predict a BMD response to diet alkali therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Barrett-Connor E, Gore R, Browner WS, Cummings SR . Prevention of osteoporotic hip fracture: global versus high-risk strategies. Osteoporos Int 1998; 8: S2–S7.

    Article  Google Scholar 

  2. Teucher B, Fairweather-Tait S . Dietary sodium as a risk factor for osteoporosis: where is the evidence? Proc Nutr Soc 2003; 62: 859–866.

    Article  CAS  Google Scholar 

  3. Krieger NS, Frick KK, LaPlante Strutz K, Michalenka A, Bushinsky DA . Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro. J Bone Miner Res 2007; 22: 907–917.

    Article  CAS  Google Scholar 

  4. Bushinsky DA, Lechleider RJ . Mechanism of proton-induced bone calcium release: calcium carbonate-dissolution. Am J Physiol 1987; 53 (5 Pt 2), F998–1005.

    Google Scholar 

  5. Lutz J . Calcium balance and acid-base status of women as affected by increased protein intake and by sodium bicarbonate ingestion. Am J Clin Nutr 1984; 39: 281–288.

    Article  CAS  Google Scholar 

  6. Lemann J, Litzow JR, Lennon EJ . The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest 1966; 45: 1608–1614.

    Article  CAS  Google Scholar 

  7. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC . Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 1994; 330: 1776–1781.

    Article  CAS  Google Scholar 

  8. Batlle DC, Sharma AM, Alsheikha MW, Sobrero M, Saleh A, Gutterman C . Renal acid excretion and intracellular pH in salt-sensitive genetic hypertension. J Clin Invest 1993; 91: 2178–2184.

    Article  CAS  Google Scholar 

  9. Frings-Meuthen P, Baecker N, Heer M . Low-grade metabolic acidosis may be the cause of sodium chloride-induced exaggerated bone resorption. J Bone Miner Res 2008; 23: 517–524.

    Article  CAS  Google Scholar 

  10. Fenton TR, Eliasziw M, Tough SC, Lyon AW, Brown JP, Hanley DA . Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study. BMC Musculoskelet Disord 2010; 11: 88–88.

    Article  Google Scholar 

  11. Macdonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr 2008; 88: 465–474.

    Article  CAS  Google Scholar 

  12. King JS, Jackson R, Ashe B . Relation of sodium intake to urinary calcium excretion. Invest Urol 1964; 1: 555–560.

    CAS  PubMed  Google Scholar 

  13. McCarron DA, Rankin LI, Bennett WM, Krutzik S, McClung MR, Luft FC . Urinary calcium excretion at extremes of sodium intake in normal man. Am J Nephrol 1981; 1: 84–90.

    Article  CAS  Google Scholar 

  14. Heaney RP . Role of dietary sodium in osteoporosis. J Am Coll Nutr 2006; 25: 271S–276S.

    Article  CAS  Google Scholar 

  15. Aub JC, Tibbetts DM, McLean R . The influence of parathyroid hormone, urea, sodium chloride, fat and intertinal activity on calcium balance. J Nutr 1937; 113: 635–655.

    Article  Google Scholar 

  16. Lin PH, Ginty F, Appel LJ, Aickin M, Bohannon A, Garnero P et al. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr 2003; 133: 3130–3136.

    Article  CAS  Google Scholar 

  17. Zemel MB, Bedford BA, Standley PR, Sowers JR . Saline infusion causes rapid increase in parathyroid hormone and intracellular calcium levels. Am J Hypertens 1989; 2: 185–187.

    Article  CAS  Google Scholar 

  18. Frassetto LA, Morris RC, Sebastian A . Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet. Am J Physiol Renal Physiol 2007; 293: F521–F525.

    Article  CAS  Google Scholar 

  19. Weinberger MH . Salt sensitivity of blood pressure in humans. Hypertension 1996; 27: 481–490.

    Article  CAS  Google Scholar 

  20. Schmidlin O, Forman A, Leone A, Sebastian A, Morris RC . Salt sensitivity in blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension 2011; 58: 380–385.

    Article  CAS  Google Scholar 

  21. Morris RC, Sebastian A, Forman A, Tanaka M, Schmidlin O . Normotensive salt sensitivity: effects of race and dietary potassium. Hypertension 1999; 33: 18–23.

    Article  CAS  Google Scholar 

  22. Houston MC . The importance of potassium in managing hypertension. Curr Hypertens Rep 2011; 13: 309–317.

    Article  CAS  Google Scholar 

  23. Lin JS, O'Connor E, Whitlock EP, Beil TL . Behavioral counseling to promote physical activity and a healthful diet to prevent cardiovascular disease in adults: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 2010; 153: 736–750.

    Article  Google Scholar 

  24. Persy V, D'Haese P . Vascular calcification and bone disease: the calcification paradox. Trends Mol Med 2009; 15: 405–416.

    Article  CAS  Google Scholar 

  25. D'Amelio P, Isaia G, Isaia GC . The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J Endocrinol Invest 2009; 32 (4 Suppl), 6–9.

    CAS  PubMed  Google Scholar 

  26. Schmidlin O, Leone A, Forman A, Sebastian A, Morris RC . Evidence that ADMA-mediated vascular dysfunction can initiate salt sensitivity in normotensive African Americans. Hypertension 2008; 52: E128.

    Google Scholar 

  27. Fang Y, Mu JJ, He LC, Wang SC, Liu ZQ . Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive asians. Hypertension 2006; 48: 724–729.

    Article  CAS  Google Scholar 

  28. Sharma AM, Kribben A, Schattenfroh S, Cetto C, Distler A . Salt sensitivity in humans is associated with abnormal acid-base regulation. Hypertension 1990; 16: 407–413.

    Article  CAS  Google Scholar 

  29. Frassetto LA, Schmidlin O, Sebastian A . Sodium chloride sensitivity: a dual attack on blood pressure and bone. J Am Soc Nephrol 2009; 20: 759A.

    Article  Google Scholar 

  30. Wimalawansa SJ . Rationale for using nitric oxide donor therapy for prevention of bone loss and treatment of osteoporosis in humans. Ann NY Acad Sci 2007; 1117: 283–297.

    Article  CAS  Google Scholar 

  31. Nabhan AF, Rabie NH . Isosorbide mononitrate versus alendronate for postmenopausal osteoporosis. Int J Gynaecol Obstet 2008; 103: 213–216.

    Article  CAS  Google Scholar 

  32. Jamal SA, Goltzman D, Hanley DA, Papaioannou A, Prior JC, Josse RG . Nitrate use and changes in bone mineral density: the Canadian Multicentre Osteoporosis Study. Osteoporos Int 2009; 20: 737–744.

    Article  CAS  Google Scholar 

  33. Frassetto LA, Todd KM, Morris RC, Sebastian A . Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr 1998; 68: 576–583.

    Article  CAS  Google Scholar 

  34. Bingham SA, Gill C, Welch A, Cassidy A, Runswick SA, Oakes S et al. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24 hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Intl J Epidemiol 1997; 26 (Suppl 1), S137–S151.

    Article  Google Scholar 

  35. Day N, McKeown N, Wong M, Welch A, Bingham S . Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Intl J Epidemiol 2001; 30: 309–317.

    Article  CAS  Google Scholar 

  36. McKeown NM, Day NE, Welch AA, Runswick SA, Luben RN, Mulligan AA et al. Use of biological markers to validate self-reported dietary intake in a random sample of the European prospective investigation into Cancer United Kingdom Norfolk Cohort. Am J Clin Nutr 2001; 74: 188–196.

    Article  CAS  Google Scholar 

  37. MacDonald AG, Birkinshaw G, Durham B, Bucknall RC, Fraser WD . Biochemical markers of bone turnover in seronegative spondylarthropathy: relationship to disease activity. Br J Rheumatol 1997; 36: 50–53.

    Article  CAS  Google Scholar 

  38. Macdonald HM, Hardcastle AC, Duthie GG, Duthie SJ, Aucott L, Sandison R et al. Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers. Br J Nutr 2009; 102: 1477–1486.

    Article  CAS  Google Scholar 

  39. Frassetto L, Morris RCJ, Sebastian A . Long-term persistence of the urine calcium-lowering effect of potassium bicarbonate in postmenopausal women. J Clin Endocrinol Metab 2005; 90: 831–834.

    Article  CAS  Google Scholar 

  40. Cummings SR, Block G, McHenry K, Baron RB . Evaluation of two food frequency methods of measuring dietary calcium intake. Am J Epidemiol 1987; 126: 796–802.

    Article  CAS  Google Scholar 

  41. Remer T, Manz F . Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr 1994; 59: 1356–1361.

    Article  CAS  Google Scholar 

  42. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR . A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr 2001; 73: 118–122.

    Article  CAS  Google Scholar 

  43. Dawson-Hughes B, Harris SS, Palermo NJ, Castaneda-Sceppa C, Rasmussen HM, Dallal GE . Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. J Clin Endocrinol Metab 2009; 94: 96–102.

    Article  CAS  Google Scholar 

  44. J Jehle S, Zanetti A, Muser J, Hulter HN, Krapf R . Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Am Soc Nephrol 2006; 17: 3213–3222.

    Article  Google Scholar 

  45. Sellmeyer DE, Schloetter M, Sebastian A . Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 2002; 87: 2008–2012.

    Article  CAS  Google Scholar 

  46. Jehle S, Krapf R . Long term neutralization of diet-induced acid load by K citrate increases bone density in elderly subjects with normal bone mass: Results of a 2 year placebo controlled trial. J Am Soc Nephrol 2010; 21: 36 (F-FC2).

    Google Scholar 

  47. Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA . Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr 2009; 90: 1674–1692.

    Article  CAS  Google Scholar 

  48. Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA . Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. Nutr J 2011; 10: 41.

    Article  CAS  Google Scholar 

  49. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA . Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res 2009; 24: 1835–1840.

    Article  CAS  Google Scholar 

  50. Chen J . Sodium sensitivity of blood pressure in Chinese populations. Curr Hypertens Rep 2010; 12: 127–134.

    Article  CAS  Google Scholar 

  51. von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E . Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int 2007; 18: 1337–1344.

    Article  CAS  Google Scholar 

  52. Li J, White J, Guo L, Zhao X, Wang J, Smart EJ et al. Salt inactivates endothelial nitric oxide synthase in endothelial cells. J Nutr 2009; 139: 447–451.

    Article  CAS  Google Scholar 

  53. Kasten TP, Collin-Osdoby P, Patel N, Osdoby P, Krukowski M, Misko TP et al. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci USA 1994; 91: 3569–3573.

    Article  CAS  Google Scholar 

  54. Lowik CW, Nibbering PH, van de Ruit M, Papapoulos SE . Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J Clin Invest 1994; 93: 1465–1472.

    Article  CAS  Google Scholar 

  55. Krishna GG . Effect of potassium intake on blood pressure. J Am Soc Nephrol 1990; 1: 43–52.

    CAS  PubMed  Google Scholar 

  56. Allender PS, Cutler JA, Follmann D, Cappuccio FP, Pryer J, Elliott P . Dietary calcium and blood pressure: a meta-analysis of randomized clinical trials. Ann Intern Med 1996; 124: 825–831.

    Article  CAS  Google Scholar 

  57. Jurgens G, Graudal NA . Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride. Cochrane Database Syst Rev 2003 (1): CD004022.

  58. Garnero P . Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther 2008; 12: 157–170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the UK Food Standards Agency (UK) and in part by Armand Hammer (USA).

Author contributions

Analytical design: AH, HM, LF, AS. Data analyses: AH. Data interpretation: AH, HM, LF, AS. Drafting manuscript: HM, LF, AS, AH. Revising manuscript content: all. Approving final version of manuscript: all. Integrity of the data analyses: AH, HM, LF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Frassetto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frassetto, L., Hardcastle, A., Sebastian, A. et al. No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur J Clin Nutr 66, 1315–1322 (2012). https://doi.org/10.1038/ejcn.2012.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.151

Keywords

This article is cited by

Search

Quick links