Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Multi-epitope vaccines: a promising strategy against tumors and viral infections

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Buonaguro L . HEPAVAC consortium. Developments in cancer vaccines for hepatocellular carcinoma. Cancer Immunol Immunother 2016; 65: 93–99.

    Article  CAS  Google Scholar 

  2. Brennick CA, George MM, Corwin WL, Srivastava PK, Ebrahimi-Nik H . Neoepitopes as cancer immunotherapy targets: key challenges and opportunities. Immunotherapy 2017; 9: 361–371.

    Article  CAS  Google Scholar 

  3. Kuo T, Wang C, Badakhshan T, Chilukuri S, BenMohamed L . The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine. Vaccine 2014; 32: 6733–6745.

    Article  CAS  Google Scholar 

  4. He R, Yang X, Liu C, Chen X, Wang L, Xiao M et al. Efficient control of chronic LCMV infection by a CD4 T cell epitope-based heterologous prime-boost vaccination in a murine model. Cell Mol Immunol 2017; e-pub ahead of print 13 March 2017; doi:10.1038/cmi.

  5. Lu IN, Farinelle S, Sausy A, Muller CP . Identification of a CD4 T-cell epitope in the hemagglutinin stalk domain of pandemic H1N1 influenza virus and its antigen-driven TCR usage signature in BALB/c mice. Cell Mol Immunol 2017; 14: 511–520.

    Article  CAS  Google Scholar 

  6. Lennerz V, Gross S, Gallerani E, Sessa C, Mach N, Boehm S et al. Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors. Cancer Immunol Immunother 2014; 63: 381–394.

    Article  CAS  Google Scholar 

  7. Jiang P, Cai Y, Chen J, Ye X, Mao S, Zhu S et al. Evaluation of tamdem Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model. Vaccine 2017; 35: 3096–3103.

    Article  CAS  Google Scholar 

  8. Zhu S, Feng Y, Rao P, Xue X, Chen S, Li W et al. Hepatitis B virus surface antigen as delivery vector can enhance Chlamydia trachomatis MOMP multi-epitope immune response in mice. Appl Microbiol Biotechnol 2014; 98: 4107–4117.

    Article  CAS  Google Scholar 

  9. Saadi M, Karkhah A, Nouri HR . Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect Genet Evol 2017; 51: 227–234.

    Article  CAS  Google Scholar 

  10. Lu C, Meng S, Jin Y, Zhang W, Li Z, Wang F et al. A novel multi-epitope vaccine from MMSA-1 and DKK1 for multiple myeloma immunotherapy. Br J Haematol 2017; 178: 413–426.

    Article  CAS  Google Scholar 

  11. Lin X, Chen S, Xue X, Lu L, Zhu S, Li W et al. Chimerically fused antigen rich of overlapped epitopes from latent membrane protein 2 (LMP2) of Epstein-Barr virus as a potential vaccine and diagnostic agent. Cell Mol Immunol 2016; 13: 492–501.

    Article  CAS  Google Scholar 

  12. Yin D, Li L, Song X, Li H, Wang J, Ju W et al. A novel multi-epitope recombined protein for diagnosis of human brucellosis. BMC Infect Dis 2016; 16: 219.

    Article  Google Scholar 

  13. Cherryholmes GA, Stanton SE, Disis ML . Current methods of epitope identification for cancer vaccine design. Vaccine 2015; 33: 7408–7414.

    Article  CAS  Google Scholar 

  14. Jiang P, Du W, Xiong Y, Lv Y, Feng J, Zhu S et al. Hepatitis B virus core antigen as a carrier for Chlamydia trachomatis MOMP multi-epitope peptide enhances protection against genital chlamydial infection. Oncotarget 2015; 6: 43281–43292.

    PubMed  PubMed Central  Google Scholar 

  15. Shen X, Jin J, Ding Y, Wang P, Wang A, Xiao D et al. Novel immunodominant epitopes derived from MAGE-A3 and its significance in serological diagnosis of gastric cancer. J Cancer Res Clin Oncol 2013; 139: 1529–1538.

    Article  CAS  Google Scholar 

  16. Garnier J, Gibrat JF, Robson B . GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 1996; 266: 540–553.

    Article  CAS  Google Scholar 

  17. Hoop TP, Woods KR . Prediction of antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 1981; 78: 3824–3828.

    Article  Google Scholar 

  18. Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ . Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 2017; 16: 489–496.

    Article  CAS  Google Scholar 

  19. Alipour Talesh G, Ebrahimi Z, Badiee A, Mansourian M, Attar H, Arabi L et al. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett 2016; 176: 57–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Zhang.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol 15, 182–184 (2018). https://doi.org/10.1038/cmi.2017.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.92

This article is cited by

Search

Quick links