Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Innate immunity in tuberculosis: host defense vs pathogen evasion

Abstract

The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host’s innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host–pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. World Health Organization. Global Tuberculosis Report 2016. WHO: Geneva, Switzerland, 2016.

  2. Sia JK, Georgieva M, Rengarajan J . Innate immune defenses in human tuberculosis: an overview of the interactions between mycobacterium tuberculosis and innate immune cells. J Immunol Res 2015; 2015: 747543.

    PubMed  PubMed Central  Google Scholar 

  3. Killick KE, Ni Cheallaigh C, O'Farrelly C, Hokamp K, MacHugh DE, Harris J . Receptor-mediated recognition of mycobacterial pathogens. Cell Microbiol 2013; 15: 1484–1495.

    CAS  PubMed  Google Scholar 

  4. Lerner TR, Borel S, Gutierrez MG . The innate immune response in human tuberculosis. Cell Microbiol 2015; 17: 1277–1285.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Khan N, Vidyarthi A, Javed S, Agrewala JN . Innate immunity holding the flanks until reinforced by adaptive immunity against mycobacterium tuberculosis infection. Front Microbiol 2016; 7: 328.

    PubMed  PubMed Central  Google Scholar 

  6. Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D, Velayati AA et al. Interaction of pattern recognition receptors with mycobacterium tuberculosis. J Clin Immunol 2015; 35: 1–10.

    CAS  PubMed  Google Scholar 

  7. Korb VC, Chuturgoon AA, Moodley D . Mycobacterium tuberculosis: manipulator of protective immunity. Int J Mol Sci 2016; 17: 131.

    PubMed  PubMed Central  Google Scholar 

  8. Goldberg MF, Saini NK, Porcelli SA . Evasion of innate and adaptive immunity by Mycobacterium tuberculosis. Microbiol Spectr 2014; 2: 5.

    Google Scholar 

  9. Gold MC, Napier RJ, Lewinsohn DM . MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 2015; 264: 154–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Rhijn I, Moody DB . CD1 and mycobacterial lipids activate human T cells. Immunol Rev 2015; 264: 138–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Arora P, Foster EL, Porcelli SA . CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis. Adv Exp Med Biol 2013; 83: 199–223.

    Google Scholar 

  12. McClean CM, Tobin DM . Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 2016; 74: 7.

    Google Scholar 

  13. Cadena AM, Flynn JL, Fortune SM . The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. MBio 2016; 7: e00342–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cappelli G, Volpe P, Sanduzzi A, Sacchi A, Colizzi V, Mariani F . Human macrophage gamma interferon decreases gene expression but not replication of Mycobacterium tuberculosis: analysis of the host-pathogen reciprocal influence on transcription in a comparison of strains H37Rv and CMT97. Infect Immun 2001; 69: 7262–7270.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S et al. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med 2011; 3: 104ra2.

    Google Scholar 

  16. Liu PT, Stenger S, Tang DH, Modlin RL . Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007; 179: 2060–2063.

    CAS  PubMed  Google Scholar 

  17. Jo EK . Innate immunity to mycobacteria: vitamin D and autophagy. Cell Microbiol 2010; 12: 1026–1035.

    CAS  PubMed  Google Scholar 

  18. Murray PJ . Macrophage polarization. Annu Rev Physiol 2017; 79: 541–566.

    CAS  PubMed  Google Scholar 

  19. Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK . New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol 2016; 7: 34–40.

    Google Scholar 

  20. Sica A, Erreni M, Allavena P, Porta C . Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72: 4111–4126.

    CAS  PubMed  Google Scholar 

  21. Duque-Correa MA, Kuhl AA, Rodriguez PC, Zedler U, Schommer-Leitner S, Rao M et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci USA 2014; 111: E4024–E4032.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lastrucci C, Benard A, Balboa L, Pingris K, Souriant S, Poincloux R et al. Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis. Cell Res 2015; 25: 1333–1351.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lopes RL, Borges TJ, Zanin RF, Bonorino C . IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine 2016; 85: 123–129.

    CAS  PubMed  Google Scholar 

  24. Knaul JK, Jorg S, Oberbeck-Mueller D, Heinemann E, Scheuermann L, Brinkmann V et al. Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med 2014; 190: 1053–1066.

    PubMed  Google Scholar 

  25. Khan A, Hunter RL, Jagannath C . Emerging role of mesenchymal stem cells during tuberculosis: the fifth element in cell mediated immunity. Tuberculosis 2016; 101S: S45–S52.

    PubMed  Google Scholar 

  26. Feng Y, Dorhoi A, Mollenkopf HJ, Yin H, Dong Z, Mao L et al. Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation. J Infect Dis 2014; 210: 1700–1710.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 2008; 4: e1000204.

    PubMed  PubMed Central  Google Scholar 

  28. Singh V, Kaur C, Chaudhary VK, Rao KV, Chatterjee S . M. tuberculosis secretory protein ESAT-6 induces metabolic flux perturbations to drive foamy macrophage differentiation. Sci Rep 2015; 5: 12906.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar et al. DNA damage signaling instructs polyploid macrophage fate in granulomas. Cell 2016; 167: 1264–80 e18.

    CAS  PubMed  Google Scholar 

  30. Mehrotra P, Jamwal SV, Saquib N, Sinha N, Siddiqui Z, Manivel V et al. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog 2014; 10: e1004265.

    PubMed  PubMed Central  Google Scholar 

  31. Mosquera-Restrepo SF, Caro AC, Pelaez-Jaramillo CA, Rojas M . Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control. Cell Immunol 2016; 303: 24–33.

    CAS  PubMed  Google Scholar 

  32. Prendergast KA, Kirman JR . Dendritic cell subsets in mycobacterial infection: control of bacterial growth and T cell responses. Tuberculosis 2013; 93: 115–122.

    CAS  PubMed  Google Scholar 

  33. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 2003; 197: 121–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Carroll MV, Sim RB, Bigi F, Jakel A, Antrobus R, Mitchell DA . Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG. Protein Cell 2010; 1: 859–870.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Driessen NN, Ummels R, Maaskant JJ, Gurcha SS, Besra GS, Ainge GD et al. Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DC-SIGN. Infect Immun 2009; 77: 4538–4547.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roberts LL, Robinson CM . Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology 2014; 141: 39–1451.

    CAS  PubMed  Google Scholar 

  37. Bollampalli VP, Harumi Yamashiro L, Feng X, Bierschenk D, Gao Y, Blom H et al. BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming. PLoS Pathog 2015; 11: e1005206.

    PubMed  PubMed Central  Google Scholar 

  38. Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G . Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 2001; 166: 7477–7485.

    CAS  PubMed  Google Scholar 

  39. Kim WS, Kim JS, Cha SB, Kim SJ, Kim H, Kwon KW et al. Mycobacterium tuberculosis PE27 activates dendritic cells and contributes to Th1-polarized memory immune responses during in vivo infection. Immunobiology 2016; 221: 440–453.

    CAS  PubMed  Google Scholar 

  40. Choi HG, Kim WS, Back YW, Kim H, Kwon KW, Kim JS et al. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. Eur J Immunol 2015; 45: 1957–1971.

    CAS  PubMed  Google Scholar 

  41. Chadha A, Mehto S, Selvakumar A, Vashishta M, Kamble SS, Popli S et al. Suppressive role of neddylation in dendritic cells during Mycobacterium tuberculosis infection. Tuberculosis 2015; 95: 599–607.

    CAS  PubMed  Google Scholar 

  42. Kuo CP, Chang KS, Hsu JL, Tsai IF, Lin AB, Wei TY et al. Analysis of the immune response of human dendritic cells to Mycobacterium tuberculosis by quantitative proteomics. Proteome Sci 2016; 14: 5.

    PubMed  PubMed Central  Google Scholar 

  43. Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Fae KC et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 2014; 124: 1268–1282.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Niazi MK, Dhulekar N, Schmidt D, Major S, Cooper R, Abeijon C et al. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis Model Mech 2015; 8: 1141–1153.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gopal R, Monin L, Torres D, Slight S, Mehra S, McKenna KC et al. S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med 2013; 188: 1137–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dorhoi A, Iannaccone M, Farinacci M, Fae KC, Schreiber J, Moura-Alves P et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 2013; 123: 4836–4848.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dallenga T, Schaible UE . Neutrophils in tuberculosis—first line of defence or booster of disease and targets for host-directed therapy? Pathog Dis 2016; 7: 3.

    Google Scholar 

  48. Elkington PT, Green JA, Emerson JE, Lopez-Pascua LD, Boyle JJ, O'Kane CM et al. Synergistic up-regulation of epithelial cell matrix metalloproteinase-9 secretion in tuberculosis. Am J Respir Cell Mol Biol 2007; 37: 431–437.

    CAS  PubMed  Google Scholar 

  49. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 2001; 167: 6533–6544.

    CAS  PubMed  Google Scholar 

  50. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 2007; 117: 1988–1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan BH, Meinken C, Bastian M, Bruns H, Legaspi A, Ochoa MT et al. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol 2006; 177: 1864–1871.

    CAS  PubMed  Google Scholar 

  52. McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 2011; 41: 1941–1947.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 2015; 528: 565–569.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Petit-Jentreau L, Jouvion G, Charles P, Majlessi L, Gicquel B, Tailleux L . Ecto-5'-nucleotidase (CD73) deficiency in Mycobacterium tuberculosis-infected mice enhances neutrophil recruitment. Infect Immun 2015; 83: 3666–3674.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE . Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol 2012; 14: 1109–1121.

    CAS  PubMed  Google Scholar 

  56. Francis RJ, Butler RE, Stewart GR . Mycobacterium tuberculosis ESAT-6 is a leukocidin causing Ca2+ influx, necrosis and neutrophil extracellular trap formation. Cell Death Dis 2014; 5: e1474.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Blomgran R, Ernst JD . Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J Immunol 2011; 186: 7110–7119.

    CAS  PubMed  Google Scholar 

  58. Ong CW, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT, Tezera LB et al. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog 2015; 11: e1004917.

    PubMed  PubMed Central  Google Scholar 

  59. Allen M, Bailey C, Cahatol I, Dodge L, Yim J, Kassissa C et al. Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front Immunol 2015; 6: 508.

    PubMed  PubMed Central  Google Scholar 

  60. Esin S, Counoupas C, Aulicino A, Brancatisano FL, Maisetta G, Bottai D et al. Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and Toll-like receptor 2. Scand J Immunol 2013; 77: 460–469.

    CAS  PubMed  Google Scholar 

  61. Feng CG, Kaviratne M, Rothfuchs AG, Cheever A, Hieny S, Young HA et al. NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 2006; 177: 7086–7093.

    CAS  PubMed  Google Scholar 

  62. Portevin D, Via LE, Eum S, Young D . Natural killer cells are recruited during pulmonary tuberculosis and their ex vivo responses to mycobacteria vary between healthy human donors in association with KIR haplotype. Cell Microbiol 2012; 14: 1734–1744.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu CC, Wu TS, Hsu YJ, Chang CJ, Lin CS, Chia JH et al. NK cells kill mycobacteria directly by releasing perforin and granulysin. J Leukoc Biol 2014; 96: 1119–1129.

    PubMed  Google Scholar 

  64. Bozzano F, Costa P, Passalacqua G, Dodi F, Ravera S, Pagano G et al. Functionally relevant decreases in activatory receptor expression on NK cells are associated with pulmonary tuberculosis in vivo and persist after successful treatment. Int Immunol 2009; 21: 779–791.

    CAS  PubMed  Google Scholar 

  65. Guerra C, Johal K, Morris D, Moreno S, Alvarado O, Gray D et al. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol 2012; 168: 142–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhaskar A, Munshi M, Khan SZ, Fatima S, Arya R, Jameel S et al. Measuring glutathione redox potential of HIV-1-infected macrophages. J Biol Chem 2015; 290: 1020–1038.

    CAS  PubMed  Google Scholar 

  67. Court N, Vasseur V, Vacher R, Fremond C, Shebzukhov Y, Yeremeev VV et al. Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. J Immunol 2010; 184: 7057–7070.

    CAS  PubMed  Google Scholar 

  68. Bowdish DM, Gordon S . Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev 2009; 227: 19–31.

    CAS  PubMed  Google Scholar 

  69. Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, Leifer CA et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 2009; 5: e1000474.

    PubMed  PubMed Central  Google Scholar 

  70. Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M et al. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol 2012; 24: 637–644.

    CAS  PubMed  Google Scholar 

  71. Moura-Alves P, Fae K, Houthuys E, Dorhoi A, Kreuchwig A, Furkert J et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 2014; 512: 387–392.

    CAS  PubMed  Google Scholar 

  72. Li J, Chai QY, Liu CH . The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13: 560–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawai T, Akira S . The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373–384.

    CAS  PubMed  Google Scholar 

  74. Saraav I, Singh S, Sharma S . Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion? Immunol Cell Biol 2014; 92: 741–746.

    CAS  PubMed  Google Scholar 

  75. Sugawara I, Yamada H, Mizuno S, Takeda K, Akira S . Mycobacterial infection in MyD88-deficient mice. Microbiol Immunol 2003; 47: 841–847.

    CAS  PubMed  Google Scholar 

  76. Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 2004; 164: 49–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Najmi N, Kaur G, Sharma SK, Mehra NK . Human Toll-like receptor 4 polymorphisms TLR4 Asp299Gly and Thr399Ile influence susceptibility and severity of pulmonary tuberculosis in the Asian Indian population. Tissue Antigens 2010; 76: 102–109.

    CAS  PubMed  Google Scholar 

  78. Lai YF, Lin TM, Wang CH, Su PY, Wu JT, Lin MC et al. Functional polymorphisms of the TLR7 and TLR8 genes contribute to Mycobacterium tuberculosis infection. Tuberculosis 2016; 98: 125–131.

    CAS  PubMed  Google Scholar 

  79. Carvalho NB, Oliveira FS, Duraes FV, de Almeida LA, Florido M, Prata LO et al. Toll-like receptor 9 is required for full host resistance to Mycobacterium avium infection but plays no role in induction of Th1 responses. Infect Immun 2011; 79: 1638–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Holscher C, Reiling N, Schaible UE, Holscher A, Bathmann C, Korbel D et al. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 2008; 38: 680–694.

    PubMed  Google Scholar 

  81. Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A et al. Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 2010; 184: 3326–3330.

    CAS  PubMed  Google Scholar 

  82. Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV . Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J Immunol 2006; 177: 422–429.

    CAS  PubMed  Google Scholar 

  83. Bai W, Liu H, Ji Q, Zhou Y, Liang L, Zheng R et al. TLR3 regulates mycobacterial RNA-induced IL-10 production through the PI3K/AKT signaling pathway. Cell Signal 2014; 26: 942–950.

    CAS  PubMed  Google Scholar 

  84. Liu Y, Li JY, Chen ST, Huang HR, Cai H . The rLrp of Mycobacterium tuberculosis inhibits proinflammatory cytokine production and downregulates APC function in mouse macrophages via a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism. Cell Mol Immunol 2016; 13: 729–746.

    CAS  PubMed  Google Scholar 

  85. Wang J, Li BX, Ge PP, Li J, Wang Q, Gao GF et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat Immunol 2015; 16: 237–245.

    CAS  PubMed  Google Scholar 

  86. Li J, Chai QY, Zhang Y, Li BX, Wang J, Qiu XB et al. Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling. J Immunol 2015; 194: 3756–3767.

    CAS  PubMed  Google Scholar 

  87. Yang H, Liu H, Chen H, Mo H, Chen J, Huang X et al. G protein-coupled receptor160 regulates mycobacteria entry into macrophages by activating ERK. Cell Signal 2016; 28: 1145–1151.

    CAS  PubMed  Google Scholar 

  88. Kim YK, Shin JS, Nahm MH . NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 2016; 57: 5–14.

    CAS  PubMed  Google Scholar 

  89. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 2012; 8: e1002507.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L, Veyrier F et al. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 2008; 181: 7157–7165.

    CAS  PubMed  Google Scholar 

  91. Juarez E, Carranza C, Hernandez-Sanchez F, Leon-Contreras JC, Hernandez-Pando R, Escobedo D et al. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur J Immunol 2012; 42: 880–889.

    CAS  PubMed  Google Scholar 

  92. Austin CM, Ma X, Graviss EA . Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J Infect Dis 2008; 197: 1713–1716.

    CAS  PubMed  Google Scholar 

  93. Pan H, Dai Y, Tang S, Wang J . Polymorphisms of NOD2 and the risk of tuberculosis: a validation study in the Chinese population. Int J Immunogenet 2012; 39: 233–240.

    CAS  PubMed  Google Scholar 

  94. Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 2010; 12: 1046–1063.

    CAS  PubMed  Google Scholar 

  95. McElvania Tekippe E, Allen IC, Hulseberg PD, Sullivan JT, McCann JR, Sandor M et al. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS One 2010; 5: e12320.

    PubMed  PubMed Central  Google Scholar 

  96. Goyal S, Klassert TE, Slevogt H . C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol 2016; 205: 513–535.

    CAS  PubMed  Google Scholar 

  97. Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 2005; 202: 987–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Geurtsen J, Chedammi S, Mesters J, Cot M, Driessen NN, Sambou T et al. Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol 2009; 183: 5221–5231.

    CAS  PubMed  Google Scholar 

  99. Matsunaga I, Moody DB . Mincle is a long sought receptor for mycobacterial cord factor. J Exp Med 2009; 206: 2865–2868.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yadav M, Schorey JS . The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 2006; 108: 3168–3175.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Marakalala MJ, Guler R, Matika L, Murray G, Jacobs M, Brombacher F et al. The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice. Microbes Infect 2011; 13: 198–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M et al. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 2014; 41: 402–413.

    CAS  PubMed  Google Scholar 

  103. Miyake Y, Masatsugu OH, Yamasaki S . C-type lectin receptor MCL facilitates mincle expression and signaling through complex formation. J Immunol 2015; 194: 5366–5374.

    CAS  PubMed  Google Scholar 

  104. Wilson GJ, Marakalala MJ, Hoving JC, van Laarhoven A, Drummond RA, Kerscher B et al. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 2015; 17: 252–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Troegeler A, Lugo-Villarino G, Hansen S, Rasolofo V, Henriksen ML, Mori K et al. Collectin CL-LK is a novel soluble pattern recognition receptor for Mycobacterium tuberculosis. PLoS ONE 2015; 10: e0132692.

    PubMed  PubMed Central  Google Scholar 

  106. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci USA 2017; 114: E540–E549.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Korbel DS, Schneider BE, Schaible UE . Innate immunity in tuberculosis: myths and truth. Microbes Infect 2008; 10: 995–1004.

    CAS  PubMed  Google Scholar 

  108. Hmama Z, Pena-Diaz S, Joseph S, Av-Gay Y . Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev 2015; 264: 220–232.

    CAS  PubMed  Google Scholar 

  109. Hussain Bhat K, Mukhopadhyay S . Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiol 2015; 10: 853–872.

    CAS  PubMed  Google Scholar 

  110. Weiss G, Schaible UE . Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 2015; 264: 182–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V . Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 2004; 15: 751–760.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kyei GB, Vergne I, Chua J, Roberts E, Harris J, Junutula JR et al. Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J 2006; 25: 5250–5259.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ferrari G, Langen H, Naito M, Pieters J . A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 1999; 97: 435–447.

    CAS  PubMed  Google Scholar 

  114. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 2004; 304: 1800–1804.

    CAS  PubMed  Google Scholar 

  115. Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y . Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA 2011; 108: 19371–19376.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Abramovitch RB, Rohde KH, Hsu FF, Russell DG . aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol 2011; 80: 678–694.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wee YS, Roundy KM, Weis JJ, Weis JH . Interferon-inducible transmembrane proteins of the innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and function. Innate Immun 2012; 18: 834–845.

    PubMed  Google Scholar 

  118. Diamond MS, Farzan M . The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol 2013; 13: 46–57.

    CAS  PubMed  Google Scholar 

  119. Xu Y, Yang E, Huang Q, Ni W, Kong C, Liu G et al. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2. J Mol Med 2015; 93: 645–662.

    CAS  PubMed  Google Scholar 

  120. Kimmey JM, Stallings CL . Bacterial pathogens versus autophagy: implications for therapeutic interventions. Trends Mol Med 2016; 22: 1060–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bento CF, Empadinhas N, Mendes V . Autophagy in the fight against tuberculosis. DNA Cell Biol 2015; 34: 228–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu Y, Fattah EA, Liu XD, Jagannath C, Eissa NT . Harnessing of TLR-mediated autophagy to combat mycobacteria in macrophages. Tuberculosis 2013; 93 (Suppl: S33–S37.

    Google Scholar 

  123. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci USA 2012; 109: E3168–E3176.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chauhan S, Mandell MA, Deretic V . Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy. Autophagy 2016; 12: 429–431.

    CAS  PubMed  Google Scholar 

  125. Yuan L, Ke Z, Ma J, Guo Y, Li Y . IRGM gene polymorphisms and haplotypes associate with susceptibility of pulmonary tuberculosis in Chinese Hubei Han population. Tuberculosis 2016; 96: 58–64.

    CAS  PubMed  Google Scholar 

  126. Singh SB, Davis AS, Taylor GA, Deretic V . Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313: 1438–1441.

    CAS  PubMed  Google Scholar 

  127. Lu Y, Li Q, Peng J, Zhu Y, Wang F, Wang C et al. Association of autophagy-related IRGM polymorphisms with latent versus active tuberculosis infection in a Chinese population. Tuberculosis 2016; 97: 47–51.

    CAS  PubMed  Google Scholar 

  128. Zhang L, Zhang H, Zhao Y, Mao F, Wu J, Bai B et al. Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages. DNA Cell Biol 2012; 31: 171–179.

    PubMed  Google Scholar 

  129. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH et al. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 2015; 21: 401–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Via LE, Deretic D, Ulmer RJ, Hibler NS, Huber LA, Deretic V . Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 1997; 272: 13326–13331.

    CAS  PubMed  Google Scholar 

  131. Roberts EA, Chua J, Kyei GB, Deretic V . Higher order Rab programming in phagolysosome biogenesis. J Cell Biol 2006; 174: 923–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fratti RA, Chua J, Deretic V . Induction of p38 mitogen-activated protein kinase reduces early endosome autoantigen 1 (EEA1) recruitment to phagosomal membranes. J Biol Chem 2003; 278: 46961–46967.

    CAS  PubMed  Google Scholar 

  133. Cardoso CM, Jordao L, Vieira OV . Rab10 regulates phagosome maturation and its overexpression rescues Mycobacterium-containing phagosomes maturation. Traffic 2010; 11: 221–235.

    CAS  PubMed  Google Scholar 

  134. Kim KH, An DR, Song J, Yoon JY, Kim HS, Yoon HJ et al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc Natl Acad Sci USA 2012; 109: 7729–7734.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Duan L, Yi M, Chen J, Li S, Chen W . Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem Biophys Res Commun 2016; 473: 1229–1234.

    CAS  PubMed  Google Scholar 

  136. Puri RV, Reddy PV, Tyagi AK . Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS ONE 2013; 8: e70514.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Vazquez CL, Bianco MV, Blanco FC, Forrellad MA, Gutierrez MG, Bigi F . Mycobacterium bovis requires P27 (LprG) to arrest phagosome maturation and replicate within bovine macrophages. Infect Immun 2017; 85: 3.

    Google Scholar 

  138. Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V . The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. MBio 2017; 8: 2.

    Google Scholar 

  139. Liu M, Li W, Xiang X, Xie J . Mycobacterium tuberculosis effectors interfering host apoptosis signaling. Apoptosis 2015; 20: 883–891.

    CAS  PubMed  Google Scholar 

  140. Winau F, Weber S, Sad S, de Diego J, Hoops SL, Breiden B et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 2006; 24: 105–117.

    CAS  PubMed  Google Scholar 

  141. Poirier V, Bach H, Av-Gay Y . Mycobacterium tuberculosis promotes anti-apoptotic activity of the macrophage by PtpA protein-dependent dephosphorylation of host GSK3alpha. J Biol Chem 2014; 289: 29376–29385.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 2007; 3: e110.

    PubMed  PubMed Central  Google Scholar 

  143. Molle V, Girard-Blanc C, Kremer L, Doublet P, Cozzone AJ, Prost JF . Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2003; 308: 820–825.

    CAS  PubMed  Google Scholar 

  144. Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 2007; 117: 2279–2288.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jain R, Dey B, Khera A, Srivastav P, Gupta UD, Katoch VM et al. Over-expression of superoxide dismutase obliterates the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses. Vaccine 2011; 29: 8118–8125.

    CAS  PubMed  Google Scholar 

  146. Dutta NK, Mehra S, Martinez AN, Alvarez X, Renner NA, Morici LA et al. The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes. PLoS One 2012; 7: e28958.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang Q, Liu S, Tang Y, Liu Q, Yao Y . MPT64 protein from Mycobacterium tuberculosis inhibits apoptosis of macrophages through NF-kB-miRNA21-Bcl-2 pathway. PLoS One 2014; 9: e100949.

    PubMed  PubMed Central  Google Scholar 

  148. Danelishvili L, Babrak L, Rose SJ, Everman J, Bermudez LE . Mycobacterium tuberculosis alters the metalloprotease activity of the COP9 signalosome. MBio 2014; 5: 4.

    Google Scholar 

  149. Zhang L, Zhong Q, Bao L, Zhang Y, Gao L, Huang B et al. Rv0901 from Mycobacterium tuberculosis, a possible novel virulent gene proved through the recombinant Mycobacterium smegmatis. Jpn J Infect Dis 2009; 62: 26–31.

    CAS  PubMed  Google Scholar 

  150. Xu G, Jia H, Li Y, Liu X, Li M, Wang Y . Hemolytic phospholipase Rv0183 of Mycobacterium tuberculosis induces inflammatory response and apoptosis in alveolar macrophage RAW264.7 cells. Can J Microbiol 2010; 56: 916–924.

    CAS  PubMed  Google Scholar 

  151. Sanchez A, Espinosa P, Esparza MA, Colon M, Bernal G, Mancilla R . Mycobacterium tuberculosis 38-kDa lipoprotein is apoptogenic for human monocyte-derived macrophages. Scand J Immunol 2009; 69: 20–28.

    CAS  PubMed  Google Scholar 

  152. Dasgupta A, Sureka K, Mitra D, Saha B, Sanyal S, Das AK et al. An oligopeptide transporter of Mycobacterium tuberculosis regulates cytokine release and apoptosis of infected macrophages. PLoS One 2010; 5: e12225.

    PubMed  PubMed Central  Google Scholar 

  153. Samten B, Wang X, Barnes PF . Mycobacterium tuberculosis ESX-1 system-secreted protein ESAT-6 but not CFP10 inhibits human T-cell immune responses. Tuberculosis 2009; 89 (Suppl 1): S74–S76.

    PubMed  Google Scholar 

  154. Balaji KN, Goyal G, Narayana Y, Srinivas M, Chaturvedi R, Mohammad S . Apoptosis triggered by Rv1818c, a PE family gene from Mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells. Microbes Infect 2007; 9: 271–281.

    CAS  PubMed  Google Scholar 

  155. Lopez M, Sly LM, Luu Y, Young D, Cooper H, Reiner NE . The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J Immunol 2003; 170: 2409–2416.

    CAS  PubMed  Google Scholar 

  156. Tiwari B, Ramakrishnan UM, Raghunand TR . The Mycobacterium tuberculosis protein pair PE9 (Rv1088)-PE10 (Rv1089) forms heterodimers and induces macrophage apoptosis through Toll-like receptor 4. Cell Microbiol 2015; 17: 1653–1669.

    CAS  PubMed  Google Scholar 

  157. Saini NK, Sinha R, Singh P, Sharma M, Pathak R, Rathor N et al. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-alpha dependent manner. Microb Pathog 2016; 100: 43–50.

    CAS  PubMed  Google Scholar 

  158. Ciaramella A, Martino A, Cicconi R, Colizzi V, Fraziano M . Mycobacterial 19-kDa lipoprotein mediates Mycobacterium tuberculosis-induced apoptosis in monocytes/macrophages at early stages of infection. Cell Death Differ 2000; 7: 1270–1272.

    CAS  PubMed  Google Scholar 

  159. Sanchez A, Espinosa P, Garcia T, Mancilla R . The 19 kDa Mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial apoptosis-inducing factor. Clin Dev Immunol 2012; 2012: 950503.

    PubMed  PubMed Central  Google Scholar 

  160. Wang J, Teng JL, Zhao D, Ge P, Li B, Woo PC et al. The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci Rep 2016; 6: 34827.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Man SM, Karki R, Kanneganti TD . Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017; 277: 61–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ablasser A, Dorhoi A . Inflammasome activation and function during infection with Mycobacterium tuberculosis. Curr Top Microbiol Immunol 2016; 397: 183–197.

    CAS  PubMed  Google Scholar 

  163. Eklund D, Welin A, Andersson H, Verma D, Soderkvist P, Stendahl O et al. Human gene variants linked to enhanced NLRP3 activity limit intramacrophage growth of Mycobacterium tuberculosis. J Infect Dis 2014; 209: 749–753.

    CAS  PubMed  Google Scholar 

  164. He Y, Zeng MY, Yang D, Motro B, Nunez G . NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016; 530: 354–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol 2016; 17: 250–258.

    CAS  PubMed  Google Scholar 

  166. Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 2008; 3: 224–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Shah S, Bohsali A, Ahlbrand SE, Srinivasan L, Rathinam VA, Vogel SN et al. Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-beta and AIM2 inflammasome-dependent IL-1beta production via its ESX-1 secretion system. J Immunol 2013; 191: 3514–3518.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge research funding from the National Key Research and Development Program of China (Grant Nos. 2017YFA0505900 and 2017YFD0500300), the National Basic Research Programs of China (Grant No. 2014CB74440), the National Natural Science Foundation of China (Grant Nos. 81371769 and 81571954), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDPB03) and the Youth Innovation Promotion Association CAS (Grant No. Y12A027BB2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui Hua Liu, Haiying Liu or Baoxue Ge.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, H. & Ge, B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 14, 963–975 (2017). https://doi.org/10.1038/cmi.2017.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.88

Keywords

This article is cited by

Search

Quick links