Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteomic analysis reveals distinctive protein profiles involved in CD8+ T cell-mediated murine autoimmune cholangitis

Abstract

Autoimmune cholangitis arises from abnormal innate and adaptive immune responses in the liver, and T cells are critical drivers in this process. However, little is known about the regulation of their functional behavior during disease development. We previously reported that mice with T cell-restricted expression of a dominant negative form of transforming growth factor beta receptor type II (dnTGFβRII) spontaneously develop an autoimmune cholangitis that resembles human primary biliary cholangitis (PBC). Adoptive transfer of CD8+ but not CD4+ T cells into Rag1−/− mice reproduced the disease, demonstrating a critical role for CD8+ T cells in PBC pathogenesis. Herein, we used SOMAscan technology to perform proteomic analysis of serum samples from dnTGFβRII and B6 control mice at different ages. In addition, we analyzed CD8 protein profiles after adoptive transfer of splenic CD8+ cells into Rag1−/− recipients. The use of the unique SOMAscan aptamer technology revealed critical and distinct profiles of CD8 cells, which are key to biliary mediation. In total, 254 proteins were significantly increased while 216 proteins were significantly decreased in recipient hepatic CD8+ cells compared to donor splenic CD8+ cells. In contrast to donor splenic CD8+ cells, recipient hepatic CD8+ cells expressed distinct profiles for proteins involved in chemokine signaling, focal adhesion, T cell receptor and natural killer cell-mediated cytotoxicity pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med 2005; 353: 1261–1273.

    Article  CAS  Google Scholar 

  2. Hirschfield GM, Gershwin ME. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 2013; 8: 303–330.

    Article  CAS  Google Scholar 

  3. Tomiyama T, Yang GX, Zhao M, Zhang W, Tanaka H, Wang J et al. The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell Mol Immunol 2017; 14: 276–284.

    Article  CAS  Google Scholar 

  4. Kita H, Lian ZX, Van de Water J, He XS, Matsumura S, Kaplan M et al. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002; 195: 113–123.

    Article  CAS  Google Scholar 

  5. Van de Water J, Ansari A, Prindiville T, Coppel RL, Ricalton N, Kotzin BL et al. Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med 1995; 181: 723–733.

    Article  CAS  Google Scholar 

  6. Kita H, Matsumura S, He XS, Ansari AA, Lian ZX, Van de Water J et al. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002; 109: 1231–1240.

    Article  CAS  Google Scholar 

  7. Tsuda M, Ambrosini YM, Zhang W, Yang GX, Ando Y, Rong G et al. Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology 2011; 54: 1293–1302.

    Article  CAS  Google Scholar 

  8. Fan LY, Tu XQ, Cheng QB, Zhu Y, Feltens R, Pfeiffer T et al. Cytotoxic T lymphocyte associated antigen-4 gene polymorphisms confer susceptibility to primary biliary cirrhosis and autoimmune hepatitis in Chinese population. World J Gastroenterol 2004; 10: 3056–3059.

    Article  CAS  Google Scholar 

  9. Dhirapong A, Yang GX, Nadler S, Zhang W, Tsuneyama K, Leung P et al. Therapeutic effect of cytotoxic T lymphocyte antigen 4/immunoglobulin on a murine model of primary biliary cirrhosis. Hepatology 2013; 57: 708–715.

    Article  CAS  Google Scholar 

  10. Hsu W, Zhang W, Tsuneyama K, Moritoki Y, Ridgway WM, Ansari AA et al. Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Ralpha(−/−) mice. Hepatology 2009; 49: 133–140.

    Article  CAS  Google Scholar 

  11. Huang W, Kachapati K, Adams D, Wu Y, Leung PS, Yang GX et al. Murine autoimmune cholangitis requires two hits: cytotoxic KLRG1(+) CD8 effector cells and defective T regulatory cells. J Autoimmun 2014; 50: 123–134.

    Article  CAS  Google Scholar 

  12. Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171–181.

    Article  CAS  Google Scholar 

  13. Oertelt S, Lian ZX, Cheng CM, Chuang YH, Padgett KA, He XS et al. Anti-Mitochondrial Antibodies and Primary Biliary Cirrhosis in TGF- Receptor II Dominant-Negative Mice. The Journal of Immunology 2006; 177: 1655–1660.

    Article  CAS  Google Scholar 

  14. Yang GX, Lian ZX, Chuang YH, Moritoki Y, Lan RY, Wakabayashi K et al. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 2008; 47: 1974–1982.

    Article  Google Scholar 

  15. Webber J, Stone TC, Katilius E, Smith BC, Gordon B, Mason MD et al. Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan) platform. Mol Cell Proteomics 2014; 13: 1050–1064.

    Article  CAS  Google Scholar 

  16. Desai B, Dixon K, Farrant E, Feng Q, Gibson KR, van Hoorn WP et al. Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. J Med Chem 2013; 56: 3033–3047.

    Article  CAS  Google Scholar 

  17. Davies DR, Gelinas AD, Zhang C, Rohloff JC, Carter JD, O'Connell D et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Natl Acad Sci USA 2012; 109: 19971–19976.

    Article  CAS  Google Scholar 

  18. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  Google Scholar 

  19. Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic Acids Res 2015; 43: D1049–D1056.

    Article  Google Scholar 

  20. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2015; 44: D457–D462.

    Article  Google Scholar 

  21. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011; 6: e21800.

    Article  CAS  Google Scholar 

  22. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447–D452.

    Article  CAS  Google Scholar 

  23. Oertelt S, Lian ZX, Cheng CM, Chuang YH, Padgett KA, He XS et al. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 2006; 177: 1655–1660.

    Article  CAS  Google Scholar 

  24. Zabel C, Mao L, Woodman B, Rohe M, Wacker MA, Klare Y et al. A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for huntington disease. Mol Cell Proteomics 2009; 8: 720–734.

    Article  CAS  Google Scholar 

  25. Krebs DL, Chehal MK, Sio A, Huntington ND, Da ML, Ziltener P et al. Lyn-dependent signaling regulates the innate immune response by controlling dendritic cell activation of NK cells. J Immunol 2012; 188: 5094–5105.

    Article  CAS  Google Scholar 

  26. Bao Y, Zheng J, Han C, Jin J, Han H, Liu Y et al. Tyrosine kinase Btk is required for NK cell activation. J Biol Chem 2012; 287: 23769–23778.

    Article  CAS  Google Scholar 

  27. Bae HR, Leung PS, Tsuneyama K, Valencia JC, Hodge DL, Kim S et al. Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology 2016; 64: 1189–1201.

    Article  CAS  Google Scholar 

  28. Hsueh YH, Chang YN, Loh CE, Gershwin ME, Chuang YH. AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis. J Autoimmun 2016; 66: 89–97.

    Article  CAS  Google Scholar 

  29. Chang CH, Chen YC, Zhang W, Leung PS, Gershwin ME, Chuang YH. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis. PLoS One 2015; 10: e0121320.

    Article  Google Scholar 

  30. Pollheimer MJ, Fickert P. Animal models in primary biliary cirrhosis and primary sclerosing cholangitis. Clin Rev Allergy Immunol 2015; 48: 207–217.

    Article  Google Scholar 

  31. Tanaka H, Yang GX, Tomiyama T, Tsuneyama K, Zhang W, Leung PS et al. Immunological potential of cytotoxic T lymphocyte antigen 4 immunoglobulin in murine autoimmune cholangitis. Clin Exp Immunol 2015; 180: 371–382.

    Article  CAS  Google Scholar 

  32. Wang E, Chong K, Yu M, Akhoundsadegh N, Granville DJ, Shapiro J et al. Development of autoimmune hair loss disease alopecia areata is associated with cardiac dysfunction in C3H/HeJ mice. PLoS One 2013; 8: e62935.

    Article  CAS  Google Scholar 

  33. Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA, Rubinstein M. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 1999; 10: 127–136.

    Article  CAS  Google Scholar 

  34. Ikeda A, Aoki N, Kido M, Iwamoto S, Nishiura H, Maruoka R et al. Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice. Hepatology 2014; 60: 224–236.

    Article  CAS  Google Scholar 

  35. Esfandiari E, McInnes IB, Lindop G, Huang FP, Field M, Komai-Koma M et al. A proinflammatory role of IL-18 in the development of spontaneous autoimmune disease. J Immunol 2001; 167: 5338–5347.

    Article  CAS  Google Scholar 

  36. Novick D, Kim S, Kaplanski G, Dinarello CA. Interleukin-18, more than a Th1 cytokine. Semin Immunol 2013; 25: 439–448.

    Article  CAS  Google Scholar 

  37. van Kempen TS, Wenink MH, Leijten EF, Radstake TR, Boes M. Perception of self: distinguishing autoimmunity from autoinflammation. Nat Rev Rheumatol 2015; 11: 483–492.

    Article  CAS  Google Scholar 

  38. Hurgin V, Novick D, Rubinstein M. The promoter of IL-18 binding protein: activation by an IFN-gamma -induced complex of IFN regulatory factor 1 and CCAAT/enhancer binding protein beta. Proc Natl Acad Sci U S A 2002; 99: 16957–16962.

    Article  CAS  Google Scholar 

  39. Koutoulaki A, Langley M, Sloan AJ, Aeschlimann D, Wei XQ. TNFalpha and TGF-beta1 influence IL-18-induced IFNgamma production through regulation of IL-18 receptor and T-bet expression. Cytokine 2010; 49: 177–184.

    Article  CAS  Google Scholar 

  40. Inoue Y, Abe K, Onozaki K, Hayashi H. TGF-beta decreases the stability of IL-18-induced IFN-gamma mRNA through the expression of TGF-beta-induced tristetraprolin in KG-1 cells. Biol Pharm Bull 2015; 38: 536–544.

    Article  CAS  Google Scholar 

  41. Ge G, Greenspan DS. BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 2006; 175: 111–120.

    Article  CAS  Google Scholar 

  42. Lee S, Solow-Cordero DE, Kessler E, Takahara K, Greenspan DS. Transforming growth factor-beta regulation of bone morphogenetic protein-1/procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes. J Biol Chem 1997; 272: 19059–19066.

    Article  CAS  Google Scholar 

  43. Sun HT, Cheng SX, Tu Y, Li XH, Zhang S. FoxQ1 promotes glioma cells proliferation and migration by regulating NRXN3 expression. PLoS One 2013; 8: e55693.

    Article  CAS  Google Scholar 

  44. Peng X, Luo Z, Kang Q, Deng D, Wang Q, Peng H et al. FOXQ1 mediates the crosstalk between TGF-beta and Wnt signaling pathways in the progression of colorectal cancer. Cancer Biol Ther 2015; 16: 1099–1109.

    Article  CAS  Google Scholar 

  45. Mittrucker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8(+) T cells. Arch Immunol Ther Exp (Warsz) 2014; 62: 449–458.

    Article  Google Scholar 

  46. Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun 2015; 66: 60–75.

    Article  Google Scholar 

  47. Chuang YH, Lian ZX, Tsuneyama K, Chiang BL, Ansari AA, Coppel RL et al. Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 2006; 26: 232–240.

    Article  CAS  Google Scholar 

  48. Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS et al. Adaptive immunity in the liver. Cell Mol Immunol 2016; 13: 354–368.

    Article  CAS  Google Scholar 

  49. Mattner J, Savage PB, Leung P, Oertelt SS, Wang V, Trivedi O et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008; 3: 304–315.

    Article  CAS  Google Scholar 

  50. Chuang YH, Lian ZX, Yang GX, Shu SA, Moritoki Y, Ridgway WM et al. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 2008; 47: 571–580.

    Article  CAS  Google Scholar 

  51. Kim EY, Lynch L, Brennan PJ, Cohen NR, Brenner MB. The transcriptional programs of iNKT cells. Semin Immunol 2015; 27: 26–32.

    Article  CAS  Google Scholar 

  52. Wen X, Kim S, Xiong R, Li M, Lawrenczyk A, Huang X et al. A Subset of CD8alphabeta+ Invariant NKT Cells in a Humanized Mouse Model. J Immunol 2015; 195: 1459–1469.

    Article  CAS  Google Scholar 

  53. Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O'Farrelly C et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 2003; 171: 1775–1779.

    Article  CAS  Google Scholar 

  54. Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M et al. NKT cells are phenotypically and functionally diverse. Eur J Immunol 1999; 29: 3768–3781.

    Article  CAS  Google Scholar 

  55. Wang Y, Wang H, Xia J, Liang T, Wang G, Li X et al. Activated CD8 T cells acquire NK1.1 expression and preferentially locate in the liver in mice after allogeneic hematopoietic cell transplantation. Immunol Lett 2013; 150: 75–78.

    Article  CAS  Google Scholar 

  56. Seregin SS, Chen GY, Laouar Y. Dissecting CD8+ NKT Cell Responses to Listeria Infection Reveals a Component of Innate Resistance. J Immunol 2015; 195: 1112–1120.

    Article  CAS  Google Scholar 

  57. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995; 83: 301–311.

    Article  CAS  Google Scholar 

  58. Hua Z, Gross AJ, Lamagna C, Ramos-Hernandez N, Scapini P, Ji M et al. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J Immunol 2014; 192: 875–885.

    Article  CAS  Google Scholar 

  59. Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 2011; 43: 329–332.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial Support: Funded by National Institutes of Health grant DK090019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weici Zhang or M Eric Gershwin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, R., Zhang, J. et al. Proteomic analysis reveals distinctive protein profiles involved in CD8+ T cell-mediated murine autoimmune cholangitis. Cell Mol Immunol 15, 756–767 (2018). https://doi.org/10.1038/cmi.2017.149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.149

Keywords

This article is cited by

Search

Quick links