Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemokines in homeostasis and diseases

Abstract

For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases. Therefore, understanding the role of chemokines and their GPCRs in the complex physiological and diseased microenvironment is important for the identification of novel therapeutic targets. This review introduces the functional array and signals of multiple chemokine GPCRs in guiding leukocyte trafficking as well as their roles in homeostasis, inflammation, immune responses and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 2004; 1: 95–104.

    CAS  PubMed  Google Scholar 

  2. Chen K, Liu M, Liu Y, Wang C, Yoshimura T, Gong W et al. Signal relay by CC chemokine receptor 2 (CCR2) and formylpeptide receptor 2 (Fpr2) in the recruitment of monocyte-derived dendritic cells in allergic airway inflammation. J Biol Chem 2013; 288: 16262–16273.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017; 17: 559–572.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014; 32: 659–702.

    CAS  PubMed  Google Scholar 

  5. Schulz O, Hammerschmidt SI, Moschovakis GL, Forster R. Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol 2016; 34: 203–242.

    CAS  PubMed  Google Scholar 

  6. Cecchinato V, D'Agostino G, Raeli L, Uguccioni M. Chemokine interaction with synergy-inducing molecules: fine tuning modulation of cell trafficking. J Leukoc Biol 2016; 99: 851–855.

    CAS  PubMed  Google Scholar 

  7. Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72: 682–690.

    CAS  PubMed  Google Scholar 

  8. Cheng W, Chen G. Chemokines and chemokine receptors in multiple sclerosis. Mediators Inflamm 2014; 2014: 659206.

    PubMed  PubMed Central  Google Scholar 

  9. Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J et al. The role of chemoattractant receptors in shaping the tumor microenvironment. Biomed Res Int 2014; 2014: 751392.

    PubMed  PubMed Central  Google Scholar 

  10. Yoshimura T, Oppenheim JJ. Chemokine-like receptor 1 (CMKLR1) and chemokine (C-C motif) receptor-like 2 (CCRL2); two multifunctional receptors with unusual properties. Exp Cell Res 2011; 317: 674–684.

    CAS  PubMed  Google Scholar 

  11. Sozzani S, Vermi W, Del Prete A, Facchetti F. Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol 2010; 31: 270–277.

    CAS  PubMed  Google Scholar 

  12. Samson M, Edinger AL, Stordeur P, Rucker J, Verhasselt V, Sharron M et al. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol 1998; 28: 1689–1700.

    CAS  PubMed  Google Scholar 

  13. Gao L, Faibish D, Fredman G, Herrera BS, Chiang N, Serhan CN et al. Resolvin E1 and chemokine-like receptor 1 mediate bone preservation. J Immunol 2013; 190: 689–694.

    CAS  PubMed  Google Scholar 

  14. Bondue B, Vosters O, de Nadai P, Glineur S, De Henau O, Luangsay S et al. ChemR23 dampens lung inflammation and enhances anti-viral immunity in a mouse model of acute viral pneumonia. PLoS Pathog 2011; 7: e1002358.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang J, Chen K, Gong W, Dunlop NM, Wang JM. G-protein coupled chemoattractant receptors and cancer. Front Biosci 2008; 13: 3352–3363.

    CAS  PubMed  Google Scholar 

  16. Fox JC, Nakayama T, Tyler RC, Sander TL, Yoshie O, Volkman BF. Structural and agonist properties of XCL2, the other member of the C-chemokine subfamily. Cytokine 2015; 71: 302–311.

    CAS  PubMed  Google Scholar 

  17. Bachelerie F, Graham GJ, Locati M, Mantovani A, Murphy PM, Nibbs R et al. New nomenclature for atypical chemokine receptors. Nat Immunol 2014; 15: 207–208.

    CAS  PubMed  Google Scholar 

  18. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2014; 66: 1–79.

    PubMed  PubMed Central  Google Scholar 

  19. Le Y, Cui Y, Iribarren P, Ying G, Wang JM. Manipulating chemoattractant and receptor genes. In Vivo 2002; 16: 1–23.

    CAS  PubMed  Google Scholar 

  20. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002; 8: 157–165.

    CAS  PubMed  Google Scholar 

  21. Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci 2014; 8: 154.

    PubMed  PubMed Central  Google Scholar 

  22. Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 2011; 11: 597–606.

    CAS  PubMed  Google Scholar 

  23. Svensson M, Agace WW. Role of CCL25/CCR9 in immune homeostasis and disease. Expert Rev Clin Immunol 2006; 2: 759–773.

    CAS  PubMed  Google Scholar 

  24. Ruiz EJ, Oeztuerk-Winder F, Ventura JJ. A paracrine network regulates the cross-talk between human lung stem cells and the stroma. Nat Commun 2014; 5: 3175.

    PubMed  PubMed Central  Google Scholar 

  25. Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun 2013; 5: 304–314.

    CAS  PubMed  Google Scholar 

  26. Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 2010; 120: 2423–2431.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591–594.

    CAS  PubMed  Google Scholar 

  28. Rankin SM. The bone marrow: a site of neutrophil clearance. J Leukoc Biol 2010; 88: 241–251.

    CAS  PubMed  Google Scholar 

  29. Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004; 104: 444–452.

    CAS  PubMed  Google Scholar 

  30. Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005; 105: 2449–2457.

    CAS  PubMed  Google Scholar 

  31. Kawai T, Choi U, Whiting-Theobald NL, Linton GF, Brenner S, Sechler JM et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol 2005; 33: 460–468.

    CAS  PubMed  Google Scholar 

  32. Kawai T, Choi U, Cardwell L, DeRavin SS, Naumann N, Whiting-Theobald NL et al. WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4. Blood 2007; 109: 78–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    CAS  PubMed  Google Scholar 

  34. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    CAS  PubMed  Google Scholar 

  35. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    CAS  PubMed  Google Scholar 

  36. Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci USA 1999; 96: 5663–5667.

    CAS  PubMed  Google Scholar 

  37. Eash KJ, Means JM, White DW, Link DC. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 2009; 113: 4711–4719.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.

    CAS  PubMed  Google Scholar 

  39. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 2011; 117: 429–439.

    CAS  PubMed  Google Scholar 

  41. Wang H, Beaty N, Chen S, Qi CF, Masiuk M, Shin DM et al. The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12. Blood 2012; 119: 465–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Graham GJ. D6 and the atypical chemokine receptor family: novel regulators of immune and inflammatory processes. Eur J Immunol 2009; 39: 342–351.

    CAS  PubMed  Google Scholar 

  43. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A et al. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci Rep 2012; 2: 786.

    PubMed  PubMed Central  Google Scholar 

  44. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010; 330: 362–366.

    CAS  PubMed  Google Scholar 

  45. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Le Y et al. Formylpeptide receptors mediate rapid neutrophil mobilization to accelerate wound healing. PLoS ONE 2014; 9: e90613.

    PubMed  PubMed Central  Google Scholar 

  46. Provoost S, Maes T, Joos GF, Tournoy KG. Monocyte-derived dendritic cell recruitment and allergic T(H)2 responses after exposure to diesel particles are CCR2 dependent. J Allergy Clin Immunol 2012; 129: 483–491.

    CAS  PubMed  Google Scholar 

  47. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7: 311–317.

    CAS  PubMed  Google Scholar 

  48. Chen K, Xiang Y, Huang J, Gong W, Yoshimura T, Jiang Q et al. The formylpeptide receptor 2 (Fpr2) and its endogenous ligand cathelin-related antimicrobial peptide (CRAMP) promote dendritic cell maturation. J Biol Chem 2014; 289: 17553–17563.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Robben PM, LaRegina M, Kuziel WA, Sibley LD. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med 2005; 201: 1761–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mordue DG, Sibley LD. A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis. J Leukoc Biol 2003; 74: 1015–1025.

    CAS  PubMed  Google Scholar 

  51. Zhao LD, Liang D, Wu XN, Li Y, Niu JW, Zhou C et al. Contribution and underlying mechanisms of CXCR4 overexpression in patients with systemic lupus erythematosus. Cell Mol Immunol 2017; 14: 842–849.

    CAS  PubMed  Google Scholar 

  52. Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001; 250: 91–104.

    CAS  PubMed  Google Scholar 

  53. Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2002; 2: 106–115.

    CAS  PubMed  Google Scholar 

  54. Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol 2001; 2: 108–115.

    CAS  PubMed  Google Scholar 

  55. Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 2007; 25: 787–820.

    CAS  PubMed  Google Scholar 

  56. Kunkel SL, Godessart N. Chemokines in autoimmunity: from pathology to therapeutics. Autoimmun Rev 2002; 1: 313–320.

    CAS  PubMed  Google Scholar 

  57. Godessart N, Kunkel SL. Chemokines in autoimmune disease. Curr Opin Immunol 2001; 13: 670–675.

    CAS  PubMed  Google Scholar 

  58. Rottman JB, Smith TL, Ganley KG, Kikuchi T, Krueger JG. Potential role of the chemokine receptors CXCR3, CCR4, and the integrin alphaEbeta7 in the pathogenesis of psoriasis vulgaris. Lab Invest 2001; 81: 335–347.

    CAS  PubMed  Google Scholar 

  59. Bruhl H, Wagner K, Kellner H, Schattenkirchner M, Schlondorff D, Mack M. Surface expression of CC- and CXC-chemokine receptors on leucocyte subsets in inflammatory joint diseases. Clin Exp Immunol 2001; 126: 551–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Szekanecz Z, Kim J, Koch AE. Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol 2003; 15: 15–21.

    CAS  PubMed  Google Scholar 

  61. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999; 103: 807–815.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lukacs NW. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol 2001; 1: 108–116.

    CAS  PubMed  Google Scholar 

  63. Mellado M, Martin de Ana A, Gomez L, Martinez C, Rodriguez-Frade JM. Chemokine receptor 2 blockade prevents asthma in a cynomolgus monkey model. J Pharmacol Exp Ther 2008; 324: 769–775.

    CAS  PubMed  Google Scholar 

  64. Panina P, Mariani M, D'Ambrosio D. Chemokine receptors in chronic obstructive pulmonary disease (COPD). Curr Drug Targets 2006; 7: 669–674.

    CAS  PubMed  Google Scholar 

  65. Donnelly LE, Barnes PJ. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci 2006; 27: 546–553.

    CAS  PubMed  Google Scholar 

  66. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res 2004; 95: 858–866.

    CAS  PubMed  Google Scholar 

  67. Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999; 103: 773–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Awad AS, Kinsey GR, Khutsishvili K, Gao T, Bolton WK, Okusa MD. Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am J Physiol Renal Physiol 2011; 301: F1358–F1366.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Solomon M, Balasa B, Sarvetnick N. CCR2 and CCR5 chemokine receptors differentially influence the development of autoimmune diabetes in the NOD mouse. Autoimmunity 2010; 43: 156–163.

    CAS  PubMed  Google Scholar 

  70. Nelson PJ, Krensky AM. Chemokines, chemokine receptors, and allograft rejection. Immunity 2001; 14: 377–386.

    CAS  PubMed  Google Scholar 

  71. Inston NG, Cockwell P. The evolving role of chemokines and their receptors in acute allograft rejection. Nephrol Dial Transplant 2002; 17: 1374–1379.

    CAS  PubMed  Google Scholar 

  72. Zaitseva M, Peden K, Golding H. HIV coreceptors: role of structure, posttranslational modifications, and internalization in viral-cell fusion and as targets for entry inhibitors. Biochim Biophys Acta 2003; 1614: 51–61.

    CAS  PubMed  Google Scholar 

  73. Lusso P. HIV and the chemokine system: 10 years later. EMBO J 2006; 25: 447–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cummings CJ, Martin TR, Frevert CW, Quan JM, Wong VA, Mongovin SM et al. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J Immunol 1999; 162: 2341–2346.

    CAS  PubMed  Google Scholar 

  75. Juffermans NP, Dekkers PE, Peppelenbosch MP, Speelman P, van Deventer SJ, van Der Poll T. Expression of the chemokine receptors CXCR1 and CXCR2 on granulocytes in human endotoxemia and tuberculosis: involvement of the p38 mitogen-activated protein kinase pathway. J Infect Dis 2000; 182: 888–894.

    CAS  PubMed  Google Scholar 

  76. Eberhardson M, Marits P, Jones M, Jones P, Karlen P, Karlsson M et al. Treatment of inflammatory bowel disease by chemokine receptor-targeted leukapheresis. Clin Immunol 2013; 149: 73–82.

    CAS  PubMed  Google Scholar 

  77. Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm Bowel Dis 2008; 14: 1000–1011.

    PubMed  PubMed Central  Google Scholar 

  78. Xu L, Kitade H, Ni Y, Ota T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules 2015; 5: 1563–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang JM, Chertov O, Proost P, Li JJ, Menton P, Xu L et al. Purification and identification of chemokines potentially involved in kidney-specific metastasis by a murine lymphoma variant: induction of migration and NFkappaB activation. Int J Cancer 1998; 75: 900–907.

    CAS  PubMed  Google Scholar 

  80. Wang JM, Deng X, Gong W, Su S. Chemokines and their role in tumor growth and metastasis. J Immunol Methods 1998; 220: 1–17.

    CAS  PubMed  Google Scholar 

  81. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7: 211–217.

    CAS  PubMed  Google Scholar 

  82. Mantovani A. Cancer: inflaming metastasis. Nature 2009; 457: 36–37.

    CAS  PubMed  Google Scholar 

  83. Ali S, Lazennec G. Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev 2007; 26: 401–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vindrieux D, Escobar P, Lazennec G. Emerging roles of chemokines in prostate cancer. Endocr Relat Cancer 2009; 16: 663–673.

    CAS  PubMed  Google Scholar 

  85. Wu S, Gessner R, Taube T, Korte A, von Stackelberg A, Kirchner R et al. Chemokine IL-8 and chemokine receptor CXCR3 and CXCR4 gene expression in childhood acute lymphoblastic leukemia at first relapse. J Pediatr Hematol Oncol 2006; 28: 216–220.

    CAS  PubMed  Google Scholar 

  86. Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 2006; 7: 243.

    PubMed  PubMed Central  Google Scholar 

  87. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 2004; 64: 4302–4308.

    CAS  PubMed  Google Scholar 

  88. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004; 6: 459–469.

    CAS  PubMed  Google Scholar 

  89. Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F. Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer 2008; 122: 91–99.

    CAS  PubMed  Google Scholar 

  90. Jiang YP, Wu XH, Shi B, Wu WX, Yin GR. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol Oncol 2006; 103: 226–233.

    CAS  PubMed  Google Scholar 

  91. Oda Y, Ohishi Y, Basaki Y, Kobayashi H, Hirakawa T, Wake N et al. Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression. Cancer Sci 2007; 98: 1020–1026.

    CAS  PubMed  Google Scholar 

  92. Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H. Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 2008; 99: 539–542.

    CAS  PubMed  Google Scholar 

  93. Hirata H, Hinoda Y, Kikuno N, Kawamoto K, Dahiya AV, Suehiro Y et al. CXCL12 G801A polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin Cancer Res 2007; 13: 5056–5062.

    CAS  PubMed  Google Scholar 

  94. Liang JJ, Zhu S, Bruggeman R, Zaino RJ, Evans DB, Fleming JB et al. High levels of expression of human stromal cell-derived factor-1 are associated with worse prognosis in patients with stage II pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2010; 19: 2598–2604.

    CAS  PubMed  Google Scholar 

  95. Marechal R, Demetter P, Nagy N, Berton A, Decaestecker C, Polus M et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br J Cancer 2009; 100: 1444–1451.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 2004; 64: 8420–8427.

    CAS  PubMed  Google Scholar 

  97. Franco R, Cantile M, Scala S, Catalano E, Cerrone M, Scognamiglio G et al. Histomorphologic parameters and CXCR4 mRNA and protein expression in sentinel node melanoma metastasis are correlated to clinical outcome. Cancer Biol Ther 2010; 9: 423–429.

    CAS  PubMed  Google Scholar 

  98. Scala S, Giuliano P, Ascierto PA, Ierano C, Franco R, Napolitano M et al. Human melanoma metastases express functional CXCR4. Clin Cancer Res 2006; 12: 2427–2433.

    CAS  PubMed  Google Scholar 

  99. Kaifi JT, Yekebas EF, Schurr P, Obonyo D, Wachowiak R, Busch P et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 2005; 97: 1840–1847.

    CAS  PubMed  Google Scholar 

  100. Liu K, Bao C, Yao N, Miao C, Varlotto J, Sun Q et al. Expression of CXCR4 and non-small cell lung cancer prognosis: a meta-analysis. Int J Clin Exp Med 2015; 8: 7435–7445.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Katayama A, Ogino T, Bandoh N, Nonaka S, Harabuchi Y. Expression of CXCR4 and its down-regulation by IFN-gamma in head and neck squamous cell carcinoma. Clin Cancer Res 2005; 11: 2937–2946.

    CAS  PubMed  Google Scholar 

  102. Eisenhardt A, Frey U, Tack M, Rosskopf D, Lummen G, Rubben H et al. Expression analysis and potential functional role of the CXCR4 chemokine receptor in bladder cancer. Eur Urol 2005; 47: 111–117.

    CAS  PubMed  Google Scholar 

  103. Kim J, Mori T, Chen SL, Amersi FF, Martinez SR, Kuo C et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg 2006; 244: 113–120.

    PubMed  PubMed Central  Google Scholar 

  104. Yasumoto K, Koizumi K, Kawashima A, Saitoh Y, Arita Y, Shinohara K et al. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res 2006; 66: 2181–2187.

    CAS  PubMed  Google Scholar 

  105. Oda Y, Yamamoto H, Tamiya S, Matsuda S, Tanaka K, Yokoyama R et al. CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol 2006; 19: 738–745.

    CAS  PubMed  Google Scholar 

  106. Russell HV, Hicks J, Okcu MF, Nuchtern JG. CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. J Pediatr Surg 2004; 39: 1506–1511.

    PubMed  Google Scholar 

  107. O'Hayre M, Salanga CL, Kipps TJ, Messmer D, Dorrestein PC, Handel TM. Elucidating the CXCL12/CXCR4 signaling network in chronic lymphocytic leukemia through phosphoproteomics analysis. PLoS ONE 2010; 5: e11716.

    PubMed  PubMed Central  Google Scholar 

  108. Muller A, Sonkoly E, Eulert C, Gerber PA, Kubitza R, Schirlau K et al. Chemokine receptors in head and neck cancer: association with metastatic spread and regulation during chemotherapy. Int J Cancer 2006; 118: 2147–2157.

    CAS  PubMed  Google Scholar 

  109. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A et al. Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 2009; 26: 161–169.

    PubMed  Google Scholar 

  110. Liang Y, Bollen AW, Gupta N. CC chemokine receptor-2A is frequently overexpressed in glioblastoma. J Neurooncol 2008; 86: 153–163.

    CAS  PubMed  Google Scholar 

  111. Negus RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S et al. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 1995; 95: 2391–2396.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Li S, Lu J, Chen Y, Xiong N, Li L, Zhang J et al. MCP-1-induced ERK/GSK-3beta/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells. Cell Mol Immunol 2017; 14: 621–630.

    CAS  PubMed  Google Scholar 

  113. Li J, Sun R, Tao K, Wang G. The CCL21/CCR7 pathway plays a key role in human colon cancer metastasis through regulation of matrix metalloproteinase-9. Dig Liver Dis 2011; 43: 40–47.

    PubMed  Google Scholar 

  114. Mishan MA, Ahmadiankia N, Bahrami AR. CXCR4 and CCR7: two eligible targets in targeted cancer therapy. Cell Biol Int 2016; 40: 955–967.

    CAS  PubMed  Google Scholar 

  115. Sun L, Zhang Q, Li Y, Tang N, Qiu X. CCL21/CCR7 up-regulate vascular endothelial growth factor-D expression via ERK pathway in human non-small cell lung cancer cells. Int J Clin Exp Pathol 2015; 8: 15729–15738.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi M, Chen D, Yang D, Liu XY. CCL21-CCR7 promotes the lymph node metastasis of esophageal squamous cell carcinoma by up-regulating MUC1. J Exp Clin Cancer Res 2015; 34: 149.

    PubMed  PubMed Central  Google Scholar 

  117. Zhang L, Wang D, Li Y, Liu Y, Xie X, Wu Y et al. CCL21/CCR7 axis contributed to CD133+ pancreatic cancer stem-like cell metastasis via EMT and Erk/NF-kappaB pathway. PLoS ONE 2016; 11: e0158529.

    PubMed  PubMed Central  Google Scholar 

  118. Tutunea-Fatan E, Majumder M, Xin X, Lala PK. The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis. Mol Cancer 2015; 14: 35.

    PubMed  PubMed Central  Google Scholar 

  119. Kuhnelt-Leddihn L, Muller H, Eisendle K, Zelger B, Weinlich G. Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: a potential prognostic value for CCR7 and CCR10? Arch Dermatol Res 2012; 304: 185–193.

    PubMed  Google Scholar 

  120. Chow MT, Luster AD. Chemokines in cancer. Cancer Immunol Res 2014; 2: 1125–1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang J, Wang J, Sun Y, Song W, Nor JE, Wang CY et al. Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 2005; 17: 1578–1592.

    CAS  PubMed  Google Scholar 

  122. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005; 65: 465–472.

    CAS  PubMed  Google Scholar 

  123. Wang J, Wang J, Dai J, Jung Y, Wei CL, Wang Y et al. A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res 2007; 67: 149–159.

    CAS  PubMed  Google Scholar 

  124. Guo ST, Chi MN, Yang RH, Guo XY, Zan LK, Wang CY et al. INPP4B is an oncogenic regulator in human colon cancer. Oncogene 2016; 35: 3049–3061.

    CAS  PubMed  Google Scholar 

  125. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016; 35: 816–826.

    CAS  PubMed  Google Scholar 

  126. Thomas RM, Kim J, Revelo-Penafiel MP, Angel R, Dawson DW, Lowy AM. The chemokine receptor CXCR4 is expressed in pancreatic intraepithelial neoplasia. Gut 2008; 57: 1555–1560.

    CAS  PubMed  Google Scholar 

  127. Porcile C, Bajetto A, Barbieri F, Barbero S, Bonavia R, Biglieri M et al. Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 2005; 308: 241–253.

    CAS  PubMed  Google Scholar 

  128. Porcile C, Bajetto A, Barbero S, Pirani P, Schettini G. CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann NY Acad Sci 2004; 1030: 162–169.

    CAS  PubMed  Google Scholar 

  129. Sun X, Wei L, Chen Q, Terek RM. CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression. Mol Cancer 2010; 9: 17.

    PubMed  PubMed Central  Google Scholar 

  130. Yang P, Wang G, Huo H, Li Q, Zhao Y, Liu Y. SDF-1/CXCR4 signaling up-regulates survivin to regulate human sacral chondrosarcoma cell cycle and epithelial-mesenchymal transition via ERK and PI3K/AKT pathway. Med Oncol 2015; 32: 377.

    PubMed  Google Scholar 

  131. Hu TH, Yao Y, Yu S, Han LL, Wang WJ, Guo H et al. SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/beta-catenin signaling pathway. Cancer Lett 2014; 354: 417–426.

    CAS  PubMed  Google Scholar 

  132. Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W et al. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway. Cancer Lett 2012; 322: 169–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Li X, Li P, Chang Y, Xu Q, Wu Z, Ma Q et al. The SDF-1/CXCR4 axis induces epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Cell Biochem 2014; 392: 77–84.

    CAS  PubMed  Google Scholar 

  134. Boyle ST, Ingman WV, Poltavets V, Faulkner JW, Whitfield RJ, McColl SR et al. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells. Oncogene 2016; 35: 105–115.

    CAS  PubMed  Google Scholar 

  135. Emmett MS, Lanati S, Dunn DB, Stone OA, Bates DO. CCR7 mediates directed growth of melanomas towards lymphatics. Microcirculation 2011; 18: 172–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Fang L, Lee VC, Cha E, Zhang H, Hwang ST. CCR7 regulates B16 murine melanoma cell tumorigenesis in skin. J Leukoc Biol 2008; 84: 965–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Takanami I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer 2003; 105: 186–189.

    CAS  PubMed  Google Scholar 

  138. Wang J, Xi L, Hunt JL, Gooding W, Whiteside TL, Chen Z et al. Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res 2004; 64: 1861–1866.

    CAS  PubMed  Google Scholar 

  139. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W et al. Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. Int J Cancer 2005; 116: 726–733.

    PubMed  Google Scholar 

  140. Till KJ, Lin K, Zuzel M, Cawley JC. The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 2002; 99: 2977–2984.

    CAS  PubMed  Google Scholar 

  141. Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002; 62: 2937–2941.

    CAS  PubMed  Google Scholar 

  142. Yang J, Wang S, Zhao G, Sun B. Effect of chemokine receptors CCR7 on disseminated behavior of human T cell lymphoma: clinical and experimental study. J Exp Clin Cancer Res 2011; 30: 51.

    PubMed  PubMed Central  Google Scholar 

  143. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 2009; 459: 1000–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nguyen MT, Chen A, Lu WJ, Fan W, Li PP, Oh DY et al. Regulation of chemokine and chemokine receptor expression by PPARgamma in adipocytes and macrophages. PLoS ONE 2012; 7: e34976.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Saccani A, Saccani S, Orlando S, Sironi M, Bernasconi S, Ghezzi P et al. Redox regulation of chemokine receptor expression. Proc Natl Acad Sci USA 2000; 97: 2761–2766.

    CAS  PubMed  Google Scholar 

  146. Stein JV, Nombela-Arrieta C. Chemokine control of lymphocyte trafficking: a general overview. Immunology 2005; 116: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol 2004; 25: 75–84.

    CAS  PubMed  Google Scholar 

  148. Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 2002; 283: R7-28.

    PubMed  Google Scholar 

  149. Gouwy M, Schiraldi M, Struyf S, Van Damme J, Uguccioni M. Possible mechanisms involved in chemokine synergy fine tuning the inflammatory response. Immunol Lett 2012; 145: 10–14.

    CAS  PubMed  Google Scholar 

  150. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, Fernandez S, Martin de Ana A, Jones DR et al. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 2001; 20: 2497–2507.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G, Parmentier M. Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 2005; 67: 460–469.

    CAS  PubMed  Google Scholar 

  152. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S et al. CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci USA 2008; 105: 10101–10106.

    CAS  PubMed  Google Scholar 

  153. Martinez Munoz L, Lucas P, Navarro G, Checa AI, Franco R, Martinez AC et al. Dynamic regulation of CXCR1 and CXCR2 homo- and heterodimers. J Immunol 2009; 183: 7337–7346.

    CAS  PubMed  Google Scholar 

  154. Paoletti S, Petkovic V, Sebastiani S, Danelon MG, Uguccioni M, Gerber BO. A rich chemokine environment strongly enhances leukocyte migration and activities. Blood 2005; 105: 3405–3412.

    CAS  PubMed  Google Scholar 

  155. Sebastiani S, Danelon G, Gerber B, Uguccioni M. CCL22-induced responses are powerfully enhanced by synergy inducing chemokines via CCR4: evidence for the involvement of first beta-strand of chemokine. Eur J Immunol 2005; 35: 746–756.

    CAS  PubMed  Google Scholar 

  156. Kuscher K, Danelon G, Paoletti S, Stefano L, Schiraldi M, Petkovic V et al. Synergy-inducing chemokines enhance CCR2 ligand activities on monocytes. Eur J Immunol 2009; 39: 1118–1128.

    CAS  PubMed  Google Scholar 

  157. Venetz D, Ponzoni M, Schiraldi M, Ferreri AJ, Bertoni F, Doglioni C et al. Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells. Int J Cancer 2010; 127: 2300–2312.

    CAS  PubMed  Google Scholar 

  158. Kew RR, Penzo M, Habiel DM, Marcu KB. The IKKalpha-dependent NF-kappaB p52/RelB noncanonical pathway is essential to sustain a CXCL12 autocrine loop in cells migrating in response to HMGB1. J Immunol 2012; 188: 2380–2386.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Amara A, Lorthioir O, Valenzuela A, Magerus A, Thelen M, Montes M et al. Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine. J Biol Chem 1999; 274: 23916–23925.

    CAS  PubMed  Google Scholar 

  160. Drury LJ, Ziarek JJ, Gravel S, Veldkamp CT, Takekoshi T, Hwang ST et al. Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proc Natl Acad Sci USA 2011; 108: 17655–17660.

    CAS  PubMed  Google Scholar 

  161. Kuschert GS, Coulin F, Power CA, Proudfoot AE, Hubbard RE, Hoogewerf AJ et al. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 1999; 38: 12959–12968.

    CAS  PubMed  Google Scholar 

  162. Rot A. Neutrophil attractant/activation protein-1 (interleukin-8) induces in vitro neutrophil migration by haptotactic mechanism. Eur J Immunol 1993; 23: 303–306.

    CAS  PubMed  Google Scholar 

  163. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 2003; 100: 1885–1890.

    CAS  PubMed  Google Scholar 

  164. Proudfoot AE, Uguccioni M. Modulation of chemokine responses: synergy and cooperativity. Front Immunol 2016; 7: 183.

    PubMed  PubMed Central  Google Scholar 

  165. Steinberg M, Silva M. Plerixafor: a chemokine receptor-4 antagonist for mobilization of hematopoietic stem cells for transplantation after high-dose chemotherapy for non-Hodgkin's lymphoma or multiple myeloma. Clin Ther 2010; 32: 821–843.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms S Livingstone and Ms C Lamb for secretarial assistance. This project was funded in part by federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E and was supported in part by the Intramural Research Program of the NCI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Ming Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Bao, Z., Tang, P. et al. Chemokines in homeostasis and diseases. Cell Mol Immunol 15, 324–334 (2018). https://doi.org/10.1038/cmi.2017.134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.134

This article is cited by

Search

Quick links