Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons

Abstract

npr-9 encodes a homologue of the gastrin-releasing peptide receptor (GRPR) and is expressed in AIB interneurons. In this study, we investigated the role of NPR-9 in the neuronal control of innate immunity using the model system Caenorhabditis elegans. After exposure to Pseudomonas aeruginosa PA14, npr-9(tm1652) mutants showed resistance to infection, decreased PA14 colonization and increased expression of immunity-related genes. Nematodes overexpressing NPR-9 exhibited increased susceptibility to infection, increased PA14 colonization and reduced expression of immunity-related genes. In nematodes, ChR2-mediated AIB interneuron activation strengthened the innate immune response and decreased PA14 colonization. Overexpression of NPR-9 suppressed the innate immune response and increased PA14 colonization in nematodes with the activation of AIB interneurons mediated by ChR2 or by expressing pkc-1(gf) in AIB interneurons. We, therefore, hypothesize that NPR-9 regulates the innate immune response by antagonizing the activity of AIB interneurons. Furthermore, expression of GRPR, the human homologue of NPR-9, could largely mimic NPR-9 function by regulating innate immunity in nematodes. Our results provide insight into the pivotal role of interneurons in controlling innate immunity and the complex biological functions of GRPRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kurz CL, Ewbank JJ . Caenorabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 2003; 4: 380–390.

    Article  CAS  PubMed  Google Scholar 

  2. Sifri CD, Begun J, Ausubel FM . The worm has turned-microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 2005; 13: 119–127.

    Article  CAS  PubMed  Google Scholar 

  3. Kim DH, Feinbaum R, Alloing G, Emerson EF, Garsin DA, Inoue H et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 2002; 297: 623–626.

    Article  CAS  PubMed  Google Scholar 

  4. Liberati NT, Fitzgerald KA, Kim DH, Feinbaum R, Golenbock DT, Ausubel FM . Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc Natl Acad Sci USA 2004; 101: 6593–6598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Couillault C, Pujol N, Reboul J, Sabatier L, Guichou J, Kohara Y et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 2004; 5: 488–494.

    Article  CAS  PubMed  Google Scholar 

  6. Liang B, Moussaif M, Kuan C, Gargus JJ, Sze JY . Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab 2006; 4: 429–440.

    Article  CAS  PubMed  Google Scholar 

  7. Irazoqui JE, Ng A, Xavier RJ, Ausubel FM . Role of β–catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions. Proc Natl Acad Sci USA 2008; 105: 17469–17474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans EA, Kawli T, Tan M . Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 2008; 4: e1000175.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Partridge FA, Gravato-Nobre MJ, Hodgkin J . Signal transduction pathways that function in both development and innate immunity. Dev Dyn 2010; 239: 1330–1336.

    CAS  PubMed  Google Scholar 

  10. Richardson CE, Kooistra T, Kim DH . An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 2010; 463: 1092–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roberts AF, Gumienny TL, Gleason RJ, Wang H, Padgett RW . Regulation of genes affecting body size and innate immunity by the DBL-1/MBP-like pathway in Caenorhabditis elegans. BMC. Dev Biol 2010; 10: 61.

    Google Scholar 

  12. Irazoqui JE, Urbach JM, Ausubel FM . Evolution of host innate defense: insights from C. elegans and primitive invertebrates. Nat Rev Immunol 2010; 10: 47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pukkila-Worley R, Ausubel FM . Immune defense mechanisms in the Caenorhabditis elegans intestinl epithelium. Curr Opin Immunol 2012; 24: 3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawli T, Tan M . Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. Nat Immunol 2008; 9: 1415–1424.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Zhang Y . Neural-immune communication in Caenorhabditis elegans. Cell Host Microbiol 2009; 5: 425–429.

    Article  CAS  Google Scholar 

  16. Anyanful A, Easley KA, Benian GM, Kalman D . Conditioning protects C. elegans from the lethal effects of enteropathogenic E. coli through activation of genes that regulate lifespan and innate immunity. Cell Host Microbe 2009; 5: 450–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shivers RP, Kooistra T, Chu SW, Pagano DJ, Kim DH . Tissue-specific activities of an immunity signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host Microbe 2009; 6: 321–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Styer KL, Singh V, Macosko E, Steele SE, Bargmann CI, Aballay A . Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 2008; 322: 460–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh V, Aballay A . Endoplasmic reticulum stress pathway required for immune homeostasis is neurally controlled by Arrestin-1. J Biol Chem 2012; 287: 33191–33197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Powell JR, Kim DH, Ausubel FM . The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immunity response. Proc Natl Acad Sci USA 2009; 106: 2782–2787.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun J, Singh V, Kajino-Sakamoto R, Aballay A . Neuronal GPCR controls innate immunity by regulating noncanonical unfold protein response genes. Science 2011; 332: 729–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lang R, Gundlach AL, Kofler B . The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther 2007; 115: 177–207.

    Article  CAS  PubMed  Google Scholar 

  23. Bendena WG, Boudreau JR, Papanicolaou T, Maltby M, Tobe SS, Chin-Sang ID A . Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues. Proc Natl Acad Sci USA 2008; 105: 1339–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brenner S . The genetics of Caenorhabditis elegans. Genetics 1974; 77: 71–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu Q-L, Qu Y-Y, Li X, Wang D-Y . Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. Chemosphere 2012; 87: 1281–1287.

    Article  CAS  PubMed  Google Scholar 

  26. Nouara A, Wu Q-L, Li Y-X, Tang M, Wang H-F, Zhao Y-L et al. Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmental relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 2013; 5: 6088–6096.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y-L, Wu Q-L, Tang M, Wang D-Y . The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomedicine 2014; 10: 89–98.

    Article  CAS  PubMed  Google Scholar 

  28. Diaz SA, Mooring EQ, Rens EG, Restif O . Association with pathogenic bacteria affects life-history traits and population growth in Caenorhabditis elegans. Ecol Evolut 2015; 5: 1653–1663.

    Article  Google Scholar 

  29. Wang D-Y, Cao M, Dinh J, Dong Y-Q . Methods for creating mutations in C. elegans that extend lifespan. Methods Mol Biol 2013; 1048: 65–75.

    Article  CAS  PubMed  Google Scholar 

  30. Mello C, Fire A . DNA transformation. Methods Cell Biol 1995; 48: 451–482.

    Article  CAS  PubMed  Google Scholar 

  31. Kramer RH, Mourot A, Adesnik H . Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 2013; 16: 816–823.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kocabas A, Shen C, Guo ZV, Ramanathan S . Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 2012; 490: 273–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kamath RK, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J . Effectiveness of specific RNA-mediated interference through ingested double stranded RNA in C. elegans. Genome Biol 2001; 2: 1–10.

    Google Scholar 

  34. Alper S, McBride SJ, Lackford B, Freedman JH, Schwartz DA . Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol Cell Biol 2007; 27: 5544–5553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang C, Avery L . Systemic regulation of starvation response in Caenorhabditis elegans. Genes Dev 2009; 23: 12–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D et al. Systematic analysis of genes required for synapse structure and function. Nature 2005; 436: 510–517.

    Article  CAS  PubMed  Google Scholar 

  37. Sieburth D, Madison JM, Kaplan JM . PKC-1 regulates secretion of neuropeptides. Nat Neurosci 2007; 10: 49–57.

    Article  CAS  PubMed  Google Scholar 

  38. Mills H, Wragg R, Hapiak V, Castelletto M, Zahratka J, Harris G et al. Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans. EMBO J 2012; 31: 667–688.

    Article  CAS  PubMed  Google Scholar 

  39. White JG, Southgate E, Thomson JN, Brenner S . The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986; 314: 1–340.

    Article  CAS  PubMed  Google Scholar 

  40. Nathoo AN, Moeller RA, Westlund BA, Hart AC . Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 2001; 98: 14000–14005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishikawa-Brush Y, Powell JF, Bolton P, Miller AP, Francis F, Willard HF et al. Autism and multiple exostoses associated with an X;8 translocation occurring within the GRPR gene and 3’ to the SDC2 gene. Hum Mol Genet 1997; 6: 1241–1250.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Several nematode strains used in this study were provided by the CGC, which is funded by NIH Office of Research Infrastructure Program (P40 OD010440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information for this article can be found on the Cellular & Molecular Immunology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhi, L., Wu, Q. et al. NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cell Mol Immunol 15, 27–37 (2018). https://doi.org/10.1038/cmi.2016.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.8

Keywords

This article is cited by

Search

Quick links