Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

An expanding stage for commensal microbes in host immune regulation

Abstract

Gastrointestinal commensal microbiota is a concentrated mix of microbial life forms, including bacteria, fungi, archaea and viruses. These life forms are targets of host antimicrobial defense in order to establish a homeostatic symbiosis inside the host. However, they are also instrumental in shaping the functions of our immune system via a diverse set of communication mechanisms. In the gut, T helper 17, regulatory T and B cells are continuously tuned by specific microbial strains and metabolic processes. These cells in return help to establish a mutually beneficial exchange with the gut microbial contents. Imbalances in this symbiosis lead to dysregulations in the host’s ability to control infections and the development of autoimmune diseases. In addition, the commensal microbiota has a significant and obligatory role in shaping both gut intrinsic and distal lymphoid organs, casting a large impact on the overall immune landscape in the host. This review discusses the major components of the microbial community in the gut and how its members collectively and individually exert regulatory roles in the host immune system and lymphoid structure development, as well as the functions of several major immune cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Relman DA . 'Til death do us part': coming to terms with symbiotic relationships - Foreword. Nat Rev Microbiol 2008; 6: 721–724.

    CAS  PubMed  Google Scholar 

  2. Adlerberth I, Wold AE . Establishment of the gut microbiota in Western infants. Acta Paediatr 2009; 98: 229–238.

    CAS  PubMed  Google Scholar 

  3. Tremaroli V, Backhed F . Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489: 242–249.

    CAS  PubMed  Google Scholar 

  4. Ramakrishna BS . Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 2013; 28: 9–17.

    CAS  PubMed  Google Scholar 

  5. Backhed F, Manchester JK, Semenkovich CF, Gordon JI . Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979–984.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cash HL, Hooper LV . Commensal bacteria shape Intestinal immune system development. ASM News 2005; 71: 77–83.

    Google Scholar 

  7. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101: 15718–15723.

    PubMed  PubMed Central  Google Scholar 

  8. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013; 342: 447–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Macpherson AJ, Uhr T . Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303: 1662–1665.

    CAS  PubMed  Google Scholar 

  10. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao LM et al. Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease. Cell 2014; 158: 1000–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 2012; 61: 1124–1131.

    CAS  PubMed  Google Scholar 

  12. Bevins CL, Salzman NH . Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011; 9: 356–368.

    CAS  PubMed  Google Scholar 

  13. Gordon HA, Bruckner-Kardoss E, Wostmann BS . Aging in germ-free mice: life tables and lesions observed at natural death. J Gerontol 1966; 21: 380–387.

    CAS  PubMed  Google Scholar 

  14. Bauer H, Horowitz RE, Levenson SM, Popper H . The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol 1963; 42: 471–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ley RE, Peterson DA, Gordon JI . Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837–848.

    CAS  PubMed  Google Scholar 

  16. McFall-Ngai M . Adaptive immunity: care for the community. Nature 2007; 445: 153.

    CAS  PubMed  Google Scholar 

  17. Sevelsted A, Stokholm J, Bonnelykke K, Bisgaard H . Cesarean section and chronic immune disorders. Pediatrics 2015; 135: e92–e98.

    PubMed  Google Scholar 

  18. Bager P, Wohlfahrt J, Westergaard T . Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 2008; 38: 634–642.

    CAS  PubMed  Google Scholar 

  19. Bauer E, Williams BA, Smidt H, Verstegen MW, Mosenthin R . Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol 2006; 7: 35–51.

    CAS  PubMed  Google Scholar 

  20. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011; 479: 538–541.

    CAS  PubMed  Google Scholar 

  21. Adlerberth I, Wold AE . Establishment of the gut microbiota in Western infants. Acta paediatrica 2009; 98: 229–238.

    CAS  PubMed  Google Scholar 

  22. Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–U70.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543-+.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012; 37: 158–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ichinohe T, Pang IK . Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 2011; 108: 5354–5359.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK et al. Antibiotic Therapy in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2011; 106: 661–673.

    CAS  PubMed  Google Scholar 

  27. Kawada M, Arihiro A, Mizoguchi E . Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J Gastroenterol 2007; 13: 5581–5593.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A et al. Twin Study Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With Ulcerative Colitis. Gastroenterology 2011; 141: 227–236.

    PubMed  Google Scholar 

  29. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR . Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104: 13780–13785.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Manichanh C, Borruel N, Casellas F, Guarner F . The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 2012; 9: 599–608.

    Article  CAS  PubMed  Google Scholar 

  31. West CE . Gut microbiota and allergic disease: new findings. Curr Opin Clin Nutr Metab Care 2014; 17: 261–266.

    PubMed  Google Scholar 

  32. Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T . NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 2008; 173: 1714–1723.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK . Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2011; 108: 4615–4622.

    CAS  PubMed  Google Scholar 

  34. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337–341.

    CAS  PubMed  Google Scholar 

  35. Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE 2015; 10: e0137429.

    PubMed  PubMed Central  Google Scholar 

  36. Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 2010; 185: 4101–4108.

    CAS  PubMed  Google Scholar 

  37. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010; 32: 815–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D . Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 2011; 108: 11548–11553.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson HW . Yeast-like fungi of the human intestinal tract. J Infect Dis 1917; 21: 341–U18.

    Google Scholar 

  40. Gumbo T, Isada CM, Hall G, Karafa MT, Gordon SM . Candida glabrata fungemia - Clinical features of 139 patients. Medicine (Baltimore) 1999; 78: 220–227.

    CAS  Google Scholar 

  41. Dimitrov DV . The human gutome: nutrigenomics of the host-microbiome interactions. OMICS 2011; 15: 419–430.

    CAS  PubMed  Google Scholar 

  42. Rajilic-Stojanovic M, de Vos WM . The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38: 996–1047.

    CAS  PubMed  Google Scholar 

  43. Underhill DM, Iliev ID . The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 2014; 14: 405–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 2013; 8: e66019.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Standaert-Vitse A, Sendid B, Joossens M, Francois N, Vandewalle-El Khoury P, Branche J et al. Candida albicans colonization and ASCA in familial Crohn's disease. Am J Gastroenterol 2009; 104: 1745–1753.

    CAS  PubMed  Google Scholar 

  46. Zwolinska-Wcislo M, Brzozowski T, Budak A, Kwiecien S, Sliwowski Z, Drozdowicz D et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J Physiol Pharmacol 2009; 60: 107–118.

    CAS  PubMed  Google Scholar 

  47. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol 2012; 13: 246–254.

    CAS  PubMed  Google Scholar 

  48. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007; 8: 630–638.

    CAS  PubMed  Google Scholar 

  49. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012; 336: 1314–1317.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rohwer F . Global phage diversity. Cell 2003; 113: 141-.

    CAS  PubMed  Google Scholar 

  51. Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI . Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. Proc Natl Acad Sci USA 2013; 110: 20236–20241.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ogilvie LA, Jones BV . The human gut virome: a multifaceted majority. Front Microbiol 2015; 6: 918.

    PubMed  PubMed Central  Google Scholar 

  53. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160: 447–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Falk PG, Hooper LV, Midtvedt T, Gordon JI . Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62: 1157–1170.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Macpherson AJ, Harris NL . Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004; 4: 478–485.

    CAS  PubMed  Google Scholar 

  56. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008; 456: 507–510.

    CAS  PubMed  Google Scholar 

  57. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 2011; 17: 1585–U97.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C, El Aidy S et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 2015; 43: 527–540.

    CAS  PubMed  Google Scholar 

  59. Peterson DA, McNulty NP, Guruge JL, Gordon JI . IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2: 328–339.

    CAS  PubMed  Google Scholar 

  60. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 2004; 101: 1981–1986.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 2016; 534: 263–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brandtzaeg P . Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol 2009; 70: 505–515.

    CAS  PubMed  Google Scholar 

  63. Sato A, Hashiguchi M, Toda E, Iwasaki A, Hachimura S, Kaminogawa S . CD11b+ Peyer's patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J Immunol 2003; 171: 3684–3690.

    CAS  PubMed  Google Scholar 

  64. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 2013; 13: 145–149.

    CAS  PubMed  Google Scholar 

  65. Bjersing JL, Telemo E, Dahlgren U, Hanson LA . Loss of ileal IgA+ plasma cells and of CD4+ lymphocytes in ileal Peyer's patches of vitamin A deficient rats. Clin Exp Immunol 2002; 130: 404–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 2006; 314: 1157–1160.

    CAS  PubMed  Google Scholar 

  67. Tokuyama H, Tokuyama Y . Retinoids enhance Iga production by lipopolysaccharide-stimulated murine spleen-cells. Cell Immunol 1993; 150: 353–363.

    CAS  PubMed  Google Scholar 

  68. Tokuyama H, Tokuyama Y . Retinoids enhance IgA production by lipopolysaccharide-stimulated murine spleen cells. Cell Immunol 1993; 150: 353–363.

    CAS  PubMed  Google Scholar 

  69. Watanabe K, Sugai M, Nambu Y, Osato M, Hayashi T, Kawaguchi M et al. Requirement for Runx proteins in IgA class switching acting downstream of TGF-beta 1 and retinoic acid signaling. J Immunol 2010; 184: 2785–2792.

    CAS  PubMed  Google Scholar 

  70. Seo GY, Jang YS, Kim HA, Lee MR, Park MH, Park SR et al. Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-beta 1 to enhance the overall IgA response. J Leukoc Biol 2013; 94: 325–335.

    CAS  PubMed  Google Scholar 

  71. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO . A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA 2009; 106: 19256–19261.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 2014; 41: 152–165.

    CAS  PubMed  Google Scholar 

  73. Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, Cuesta A et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013; 494: 116–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 2013; 14: 307–308.

    CAS  PubMed  Google Scholar 

  75. Josefowicz SZ, Lu LF, Rudensky AY . Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012; 30: 531–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wirnsberger G, Hinterberger M, Klein L . Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunology and cell biology 2011; 89: 45–53.

    PubMed  Google Scholar 

  77. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY . Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 2004; 21: 267–277.

    CAS  PubMed  Google Scholar 

  78. Schmitt EG, Williams CB . Generation and function of induced regulatory T cells. Front Immunol 2013; 4: 152.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  80. Mottet C, Uhlig HH, Powrie F . Cutting edge: Cure of colitis by CD4(+) CD25(+) regulatory T cells. J Immunol 2003; 170: 3939–3943.

    CAS  PubMed  Google Scholar 

  81. Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012; 209: 1723–1742, S1.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232–236.

    CAS  PubMed  Google Scholar 

  83. Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 2016; 351: 858–863.

    CAS  PubMed  Google Scholar 

  84. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007; 204: 1757–1764.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011; 478: 250–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nordlund E, Aura AM, Mattila I, Kosso T, Rouau X, Poutanen K . Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J Agric Food Chem 2012; 60: 8134–8145.

    CAS  PubMed  Google Scholar 

  87. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573.

    CAS  PubMed  Google Scholar 

  88. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446–450.

    CAS  PubMed  Google Scholar 

  90. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40: 128–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Round JL, Mazmanian SK . Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010; 107: 12204–12209.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mazmanian SK, Round JL, Kasper DL . A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008; 453: 620–625.

    CAS  PubMed  Google Scholar 

  93. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C . Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 2009; 39: 216–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee YK, Turner H, Maynard CL, Oliver JR, Chen DQ, Elson CO et al. Late Developmental Plasticity in the T Helper 17 Lineage. Immunity 2009; 30: 92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Song X, He X, Li X, Qian Y . The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 2016; 13: 418–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ferber IA, Brocke S, TaylorEdwards C, Ridgway W, Dinisco C, Steinman L et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalolmyelitis (EAE). J Immunol 1996; 156: 5–7.

    CAS  PubMed  Google Scholar 

  98. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421: 744–748.

    CAS  PubMed  Google Scholar 

  99. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, Mckenzie B et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116: 1310–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 2010; 33: 279–288.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Burkett PR, Meyer zu Horste G, Kuchroo VK . Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest 2015; 125: 2211–2219.

    PubMed  PubMed Central  Google Scholar 

  102. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009; 31: 677–689.

    CAS  PubMed  Google Scholar 

  104. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008; 4: 337–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shih VF, Cox J, Kljavin NM, Dengler HS, Reichelt M, Kumar P et al. Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota. Proc Natl Acad Sci USA 2014; 111: 13942–13947.

    PubMed  PubMed Central  Google Scholar 

  106. Ivanov II, Littman DR . Segmented filamentous bacteria take the stage. Mucosal Immunol 2010; 3: 209–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014; 510: 152–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ et al. An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses. Cell 2015; 163: 381–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008; 455: 808–812.

    CAS  PubMed  Google Scholar 

  110. Killeen ME, Ferris L, Kupetsky EA, Falo L Jr, Mathers AR . Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. J Immunol 2013; 190: 4324–4336.

    CAS  PubMed  Google Scholar 

  111. Kusu T, Kayama H, Kinoshita M, Jeon SG, Ueda Y, Goto Y et al. Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 2013; 190: 774–783.

    CAS  PubMed  Google Scholar 

  112. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 2015; 8: 80–93.

    CAS  PubMed  Google Scholar 

  113. Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 2015; 349: 993–997.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 2015; 349: 989–993.

    CAS  PubMed  Google Scholar 

  115. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322: 271–275.

    CAS  PubMed  Google Scholar 

  116. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011; 332: 600–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K, Wohlfert EA et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 2014; 513: 564–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Pabst O, Herbrand H, Friedrichsen M, Velaga S, Dorsch M, Berhardt G et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J Immunol 2006; 177: 6824–6832.

    CAS  PubMed  Google Scholar 

  119. Moreau MC, Corthier G . Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3h-Hej mice. Infect Immun 1988; 56: 2766–2768.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR . An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004; 5: 64–73.

    CAS  PubMed  Google Scholar 

  121. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 2000; 288: 2369–2373.

    CAS  PubMed  Google Scholar 

  122. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999; 397: 702–706.

    CAS  PubMed  Google Scholar 

  123. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL . An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122: 107–118.

    CAS  PubMed  Google Scholar 

  124. Cupedo T, Lund FE, Ngo VN, Randall TD, Jansen W, Greuter MJ et al. Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemokine ligand 13. J Immunol 2004; 173: 4889–4896.

    CAS  PubMed  Google Scholar 

  125. Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006; 176: 803–810.

    CAS  PubMed  Google Scholar 

  126. Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, Schumann K et al. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 2011; 35: 945–957.

    CAS  PubMed  Google Scholar 

  127. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 2002; 168: 57–64.

    CAS  PubMed  Google Scholar 

  128. Clarke TB . Microbial programming of systemic innate immunity and resistance to infection. PLoS Pathog 2014; 10: e1004506.

    PubMed  PubMed Central  Google Scholar 

  129. Inagaki H, Suzuki K, Nomoto K, Yoshikai Y . Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin(+) CD44(+) T cells in sites of inflammation. Infect Immun 1996; 64: 3280–3287.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Robinson CM, Pfeiffer JK . Viruses and the Microbiota. Annu Rev Virol 2014; 1: 55–69.

    PubMed  PubMed Central  Google Scholar 

  131. Moussion C, Girard JP . Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 2011; 479: 542–546.

    CAS  PubMed  Google Scholar 

  132. Zhang Z, Li J, Zheng W, Zhao G, Zhang H, Wang X et al. Peripheral lymphoid volume expansion and maintenance are controlled by gut microbiota via RALDH+ dendritic cells. Immunity 2016; 44: 330–342.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

YS is supported by the joint Peking-Tsinghua Center for Life Sciences, the National Natural Science Foundation of China General Program (31370878) and by grants from the US NIH (R01AI098995), the Natural Sciences and Engineering Research Council of Canada (RGPIN-355350/396037) and the Canadian Institutes of Health Research (MOP-119295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Mu, L. An expanding stage for commensal microbes in host immune regulation. Cell Mol Immunol 14, 339–348 (2017). https://doi.org/10.1038/cmi.2016.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.64

Keywords

This article is cited by

Search

Quick links