Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells

Abstract

Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tedder TF, Clement LT, Cooper MD . Expression of C3d receptors during human B cell differentiation: Immunofluorescence analysis with the HB-5 monoclonal antibody. J Immunol 1984; 133: 678–683.

    CAS  PubMed  Google Scholar 

  2. Reynes M, Aubert JP, Cohen JH, Audouin J, Tricottet V, Diebold J et al. Human follicular dendritic cells express CR1, CR2 and CR3 complement receptor antigens. J Immunol 1985; 135: 2687–2694.

    CAS  PubMed  Google Scholar 

  3. Weis JJ, Tedder TF, Fearon DT . Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc Natl Acad Sci USA 1984; 81: 881–885.

    Article  CAS  Google Scholar 

  4. Szakonyi G, Guthridge JM, Li D, Young K, Holers VM, Chen XS . Structure of complement receptor 2 in complex with its C3d ligand. Science 2001; 292: 1725–1728.

    Article  CAS  Google Scholar 

  5. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT . Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA 1984; 81: 4510–4514.

    Article  CAS  Google Scholar 

  6. Carter RH, Fearon DT . CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 1992; 256: 105–107.

    Article  CAS  Google Scholar 

  7. Fearon DT, Carroll MC . Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 2000; 18: 393–422.

    Article  CAS  Google Scholar 

  8. Dempsey PW, Allison MED, Akkaraju S, Goodnow CC, Fearon DT . C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity. Science 1996; 271: 348–350.

    Article  CAS  Google Scholar 

  9. Takahashi K, Kozono Y, Waldschmidt TJ, Berthiaume D, Quigg RJ, Baron A et al. Mouse complement receptors type 1 (CR1; CD35) and type 2 (CR2; CD21): expression on normal B cell subpopulations and decreased levels during development of autoimmunity in MRL/lpr mice. J Immunol 1997; 159: 1557–1569.

    CAS  PubMed  Google Scholar 

  10. Phan TG, Paus D, Chan TD, Turner ML, Nutt SL, Basten A et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J Exp Med 2006; 203: 2419–2424.

    Article  CAS  Google Scholar 

  11. Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R . Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell diff erentiation. J Exp Med 2006; 203: 1081–1091.

    Article  CAS  Google Scholar 

  12. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK . Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16: 219–230.

    Article  CAS  Google Scholar 

  13. Cariappa A, Boboila C, Moran ST, Liu H, Shi HN, Pillai S . The recirculating B cell pool contains two functionally distinct, long-lived, posttransitional, follicular B cell populations. J Immunol 2007; 179: 2270–2281.

    Article  CAS  Google Scholar 

  14. Jacobson AC, Weis JH . Comparative functional evolution of human and mouse CR1 and CR2. J Immunol 2008; 181: 2953–2959.

    Article  CAS  Google Scholar 

  15. Kurtz CB, O'Toole E, Christensen SM, Weis JH . The murine complement receptor gene family. IV. Alternative splicing of Cr2 gene transcripts predicts two distinct gene products that share homologous domains with both human CR2 and CR1. J Immunol 1990; 144: 3581–3591.

    CAS  PubMed  Google Scholar 

  16. Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y . Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 2004; 34: 501–537.

    Article  CAS  Google Scholar 

  17. Wehr C, Eibel H, Masilamani M, Illges H, Schlesier M, Peter HH et al. A new CD21low B cell population in the peripheral blood of patients with SLE. Clin Immunol 2004; 113: 161–171.

    Article  CAS  Google Scholar 

  18. Wilson JG, Ratnoff WD, Schur PH, Fearon DT . Decreased expression of the C3b/C4b receptor (CR1) and the C3d receptor (CR2) on B lymphocytes and of CR1 on neutrophils of patients with systemic lupus erythematosus. Arthritis Rheum 1986; 29: 739–747.

    Article  CAS  Google Scholar 

  19. Marquart HV, Svendsen A, Rasmussen JM, Nielsen CH, Junker P, Svehag SE et al. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 1995; 101: 60–65.

    Article  CAS  Google Scholar 

  20. Birrell L, Kulik L, Morgan BP, Holers VM, Marchbank KJ . B cells from mice prematurely expressing human complement receptor type 2 are unresponsive to T-dependent antigens. J Immunol 2005; 174: 6974–6982.

    Article  CAS  Google Scholar 

  21. Kulik L, Marchbank KJ, Lyubchenko T, Kuhn KA, Liubchenko GA, Haluszczak C et al. Intrinsic B cell hypo-responsiveness in mice prematurely expressing human CR2/CD21 during B cell development. Eur J Immunol 2007; 37: 623–633.

    Article  CAS  Google Scholar 

  22. Finney M, Guy GR, Michell RH, Gordon J, Dugas B, Rigley KP et al. Interleukin 4 activates human B lymphocytes via transient inositol lipid hydrolysis and delayed cyclic adenosine monophosphate generation. Eur J Immunol 1990; 20: 151–156.

    Article  CAS  Google Scholar 

  23. Vereshchagina L, Tolnay M, Tsokos GC . Multiple transcription factors regulate the inducible expression of the human complement receptor 2 promoter. J Immunol 2001; 166: 6156–6163.

    Article  CAS  Google Scholar 

  24. Ulgiati D, Holers VM . CR2/CD21 proximal promoter activity is critically dependent on a cell type-specific repressor. J Immunol 2001; 167: 6912–6919.

    Article  CAS  Google Scholar 

  25. Ulgiati D, Pham C, Holers VM . Functional analysis of the human complement receptor 2 (CR2/CD21) promoter: characterization of basal transcriptional mechanisms. J Immunol 2002; 168: 6279–6285.

    Article  CAS  Google Scholar 

  26. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 2006; 38: 626–35.

    Article  CAS  Google Scholar 

  27. Albert TK, Grote K, Boeing S, Meisterernst M . Basal core promoters control the equilibrium between negative cofactor 2 and preinitiation complexes in human cells. Genome Biol 2010; 11: R33.

    Article  Google Scholar 

  28. Nozaki T, Yachie N, Ogawa R, Kratz A, Saito R, Tomita M . Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification. BMC Genomics 2011; 12: 416.

    Article  CAS  Google Scholar 

  29. Gagniuc P, Ionescu-Tirgoviste C . Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters. BMC Genomics 2012; 13: 512.

    Article  CAS  Google Scholar 

  30. Koziner B, Stavnezer J, Al-katib A, Gebhard D, Mittelman A, Andreeff M et al. Surface immunoglobulin light chain expression in pre-B cell leukemias. Ann NY Acad Sci 1986; 468: 211–226.

    Article  CAS  Google Scholar 

  31. Benjamin D, Magrath IANT, Maguire R, Janus C, Todd HD, Parsons RG . Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type. J Immunol 1982; 129: 1336–1342.

    CAS  PubMed  Google Scholar 

  32. Ralph P, Saiki O, Welte K . IgM and IgG secretion in human B cell lines regulated by B cell inducing factors (BIF) and phorbol ester. Immunol Lett 1983; 7: 17–23.

    Article  CAS  Google Scholar 

  33. Andersson LC, Nilsson K, Gahmberg CG . K562—a human erythroleukemic cell line. Int J Cancer 1979; 23: 143–147.

    Article  CAS  Google Scholar 

  34. Cruickshank MN, Fenwick E, Karimi M, Abraham LJ, Ulgiati D . Cell- and stage-specific chromatin structure across the complement receptor 2 (CR2/CD21) promoter coincide with CBF1 and C/EBP-beta binding in B cells. Mol Immunol 2009; 46: 2613–2622.

    Article  CAS  Google Scholar 

  35. Lee C, Huang CH . LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. Biotechniques 2013; 54: 141–153.

    Article  CAS  Google Scholar 

  36. Scotto-Lavino E, Du G, Frohman MA . Amplification of 5′ end cDNA with “new RACE”. Nat Protoc 2006; 1: 3056–3061.

    Article  CAS  Google Scholar 

  37. Yang L, Behrens M, Weis JJ . Identification of 5′-regions affecting the expression of the human CR2 gene. J Immunol 1991; 147: 2404–2410.

    CAS  PubMed  Google Scholar 

  38. Rayhel EJ, Dehoff MH, Holers VM . Characterization of the human complement receptor 2 (CR2/CD21) promoter reveals sequences shared with regulatory regions of other developmentally restricted B cell proteins. J Immunol 1991; 146: 2021–2026.

    CAS  PubMed  Google Scholar 

  39. Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M et al. CAGE: cap analysis of gene expression. Nat Methods 2006; 3: 211–222.

    Article  CAS  Google Scholar 

  40. Greenbaum S, Lazorchak AS, Zhuang Y . Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B lymphocytes. J Biochem 2004; 279: 45028–45035.

    CAS  Google Scholar 

  41. Kwon K, Hutter C, Sun Q, Bilic I, Cobaleda C, Malin S et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 2008; 28: 751–762.

    Article  CAS  Google Scholar 

  42. Koch CM, Andrews RM, Flicek P, Dillon SC, Clelland GK, Wilcox S et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 2007; 17: 691–707.

    Article  CAS  Google Scholar 

  43. Cruickshank MN, Karimi M, Mason RL, Fenwick E, Mercer T, Tsao BP et al. Transcriptional effects of a lupus-associated polymorphism in the 5 ′ untranslated region (UTR) of human complement receptor 2 (CR2/CD21). Mol Immunol 2012; 52: 165–173.

    Article  CAS  Google Scholar 

  44. Javahery R, Khachi A, Lo K, Zenziegregory B, Smale ST . DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol 1994; 14: 116–127.

    Article  CAS  Google Scholar 

  45. Smale ST, Schmidt MC, Berk AJ, Baltimore D . Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA 1990; 87: 4509–4513.

    Article  CAS  Google Scholar 

  46. Pedersen AG, Baldi P, Chauvin Y, Brunak S . DNA structure in human RNA polymerase II promoters. J Mol Biol 1998; 281: 663–673.

    Article  CAS  Google Scholar 

  47. Fukue Y, Sumida N, Nishikawa J, Ohyama T . Core promoter elements of eukaryotic genes have a highly distinctive mechanical property. Nucleic Acids Res 2004; 32: 5834–5840.

    Article  CAS  Google Scholar 

  48. Jin VX, Singer GAC, Agosto-Pérez FJ, Liyanarachchi S, Davuluri R . Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs. BMC Bioinformatics 2006; 7: 114.

    Article  Google Scholar 

  49. Guo G, Rödelsperger C, Digweed M, Robinson PN . Regulation of fibrillin-1 gene expression by Sp1. Gene 2013; 527: 448–455.

    Article  CAS  Google Scholar 

  50. Orekhova AS, Sverdlova PS, Spirin PV, Leonova OG, Popenko VI, Prassolov VS et al. A new bidirectional promoter from the human genome. Mol Biol 2011; 45: 442–450.

    Article  CAS  Google Scholar 

  51. Zhou T, Chiang CM . The intronless and TATA-less human TAF(II)55 gene contains a functional initiator and a downstream promoter element. J Biol Chem 2001; 276: 25503–25511.

    Article  CAS  Google Scholar 

  52. Zhou GP, Wong C, Su R, Crable SC, Anderson KP, Gallagher PG . Human potassium chloride cotransporter 1 (SLC12A4) promoter is regulated by AP-2 and contains a functional downstream promoter element. Blood 2004; 103: 4302–4309.

    Article  CAS  Google Scholar 

  53. Lee N, Iyer SS, Mu J, Weissman JD, Ohali A, Howcroft TK et al. Three novel downstream promoter elements regulate MHC class I promoter activity in mammalian cells. PLoS One 2010; 5: e15278.

    Article  CAS  Google Scholar 

  54. Barbash ZS, Weissman JD, Campbell JA, Mu J, Singer DS . Major Histocompatibility Complex Class I Core Promoter Elements Are Not Essential for Transcription in vivo. Mol Cell Biol 2013; 33: 4395–4407.

    Article  CAS  Google Scholar 

  55. Yokley BH, Selby ST, Posch PE . A stimulation-dependent alternate core promoter links lymphotoxin α expression with TGF-β1 and fibroblast growth factor-7 signaling in primary human T cells. J Immunol 2013; 190: 4573–4584.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Suzuki T, Kimura A, Nagai R, Horikoshi M . Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 2000; 5: 29–41.

    Article  CAS  Google Scholar 

  57. Won J, Yim J, Kim TK . Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem 2002; 277: 38230–38238.

    Article  CAS  Google Scholar 

  58. Rach EA, Winter DR, Benjamin AM, Corcoran DL, Ni T, Zhu J et al. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level. PLoS Genet 2011; 7: e1001274.

    Article  CAS  Google Scholar 

  59. Lenhard B, Sandelin A, Carninci P . Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 2012; 13: 233–245.

    Article  CAS  Google Scholar 

  60. Lim PS, Hardy K, Bunting KL, Ma L, Peng K, Chen X et al. Defining the chromatin signature of inducible genes in T cells. Genome Biol 2009; 10: R107.

    Article  Google Scholar 

  61. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG . Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 2007; 39: 226–231.

    Article  CAS  Google Scholar 

  62. Alexandrov BS, Gelev V, Yoo SW, Alexandrov LB, Fukuyo Y, Bishop AR et al. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation. Nucleic Acids Res 2010; 38: 1790–1795.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was generously supported by the National Health and Medical Research Council of Australia (303206 to DU and LJA), the Lupus Research Institute (to SAB), the Alliance for Lupus Research (to SAB, DU and BPT), National Institutes of Health (R01AI070983 to SAB, DU and BPT, K24 AI078004 to SAB, and P01AI083194, P01AR049084, R37AI024717 and U01HG006828 to JBH) and the US Department of Veterans Affairs (to JBH). The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Ulgiati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, R., Cruickshank, M., Karimi, M. et al. Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells. Cell Mol Immunol 13, 119–131 (2016). https://doi.org/10.1038/cmi.2014.138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.138

Keywords

Search

Quick links