Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Monomethyl fumarate augments NK cell lysis of tumor cells through degranulation and the upregulation of NKp46 and CD107a

Abstract

Dimethyl fumarate (DMF) is a new drug used to treat multiple sclerosis (MS) patients. Here, we examined the effects of DMF and the DMF metabolite monomethyl fumarate (MMF) on various activities of natural killer (NK) cells. We demonstrated that MMF augments the primary CD56+, but not CD56, NK cell lysis of K562 and RAJI tumor cells. MMF induced NKp46 expression on the surface of CD56+, but not CD56, NK cells after incubation for 24 h. This effect was closely correlated with the upregulation of CD107a expression on the surface of CD56+ NK cells and the induction of Granzyme B release from these cells through this metabolite. An anti-NKp46 antibody inhibited the MMF-induced upregulation of CD107a and the lysis of tumor cells through CD56+ NK cells. Thus, these results are the first to show that MMF augments CD56+ NK cell lysis of tumor target cells, an effect mediated through NKp46. This novel effect suggests the use of MMF for therapeutic and/or preventive protocols in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Maghazachi AA, Al-Aoukaty A . Chemokines activate natural killer cells through heterotrimeric G-proteins: implications for the treatment of AIDS and cancer. FASEB J 1998; 12: 913–924.

    Article  CAS  Google Scholar 

  2. Maghazachi AA . Compartmentalization of human natural killer cells. Mol Immunol 2005; 42: 523–529.

    Article  CAS  Google Scholar 

  3. Maghazachi AA . Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 2010; 341: 37–58.

    CAS  PubMed  Google Scholar 

  4. Fauria C, Long EO, Ljunggren HG, Bryceson YT . Regulation of human NK-cell cytokine and chemokie production by target cell recognition. Blood 2010; 115: 2167–2176.

    Article  Google Scholar 

  5. Ballas ZK, Buchta CM, Rosean TR, Heusel JW, Shey MR . Role of NK cell subsets in organ-specific murine melanoma metastasis. PLoS One 2013; 8: e65599.

    Article  CAS  Google Scholar 

  6. Cheng M, Chen Y, Xiao W, Sun R, Tian Z . NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10: 230–252.

    Article  CAS  Google Scholar 

  7. Maghazachi AA . Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells. Pharmacol Rev 2005; 57: 339–357.

    Article  CAS  Google Scholar 

  8. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H . Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 2013; 31: 413–441.

    Article  CAS  Google Scholar 

  9. Ljunggren HG, Kärre K . In search of the ‘missing self': MHC molecules and NK cell recognition. Immunol Today 1990; 11: 237–244.

    Article  CAS  Google Scholar 

  10. Kappos L, Gold R, Miller DH, MacManus DG, Havrdova E, Limmroth V et al. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008; 372: 1463–1472.

    Article  CAS  Google Scholar 

  11. Linker RA, Lee DH, Stangel M, Gold R . Fumarates for the treatment of multiple sclerosis: potential mechanisms of action and clinical studies. Expert Rev Neurother 2008; 8: 1683–1690.

    Article  CAS  Google Scholar 

  12. Gold R, Linker RA, Stangel M . Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action. Clin Immunol 2012; 142: 44–48.

    Article  CAS  Google Scholar 

  13. Scannevin RH, Chollate S, Jung MY, Shakett M, Patel H, Bista P et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 2012; 341: 274–284.

    Article  CAS  Google Scholar 

  14. Lin SX, Lisi L, Dello Russo C, Polak PE, Sharp A, Weinberg G et al. The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 2011; 3( 2).

    Article  Google Scholar 

  15. Schilling S, Goelz S, Linker RA, Leuhder F, Gold R . Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol 2006; 145: 101–107.

    Article  CAS  Google Scholar 

  16. Peng H, Guerau-de-Arellano M, Mehta VB, Yang Y, Huss DJ, Papenfuss TL et al. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem 2012; 287: 28017–28026.

    Article  CAS  Google Scholar 

  17. Ghoreschi K, Brück J, Kellerer C, Deng C, Peng H, Rothfuss O et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med 2011; 208: 2291–2303.

    Article  CAS  Google Scholar 

  18. Loewe R, Valero T, Kremling S, Pratscher B, Kunstfeld R, Pehamberger H et al. Dimethylfumarate impairs melanoma growth and metastasis. Cancer Res 2006; 66: 11888–11896.

    Article  CAS  Google Scholar 

  19. Høglund RA, Holmøy T, Harbo HF, Maghazachi AA . A one year follow-up study of natural killer and dendritic cells activities in multiple sclerosis patients receiving glatiramer acetate (GA). PLoS One 2013; 8: e62237.

    Article  Google Scholar 

  20. Rolin J, Sand KL, Knudsen E, Maghazachi AA . FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine releases. Cancer Immunol Immunother 2010; 59: 575–586.

    Article  CAS  Google Scholar 

  21. Alter G, Malenfant JM, Altfeld M . CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 2004; 294: 15–22.

    Article  CAS  Google Scholar 

  22. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367: 1098–1107.

    Article  CAS  Google Scholar 

  23. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012; 367: 1087–1097.

    Article  CAS  Google Scholar 

  24. Lee DH, Gold R, Linker RA . Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci 2012; 13: 11783–11803.

    Article  CAS  Google Scholar 

  25. Valero T, Steele S, Neumüller K, Bracher A, Niederleithner H, Pehamberger H et al. Combination of dacarbazine and dimethylfumurate efficiently reduces melanoma lymph node metastasis. J Invest Deramtol 2010; 130: 1087–194.

    Article  CAS  Google Scholar 

  26. Al-Jaderi Z, Maghazachi AA . Effects of vitamin D3, calcipotriol and FTY720 on the expression of surface molecules and cytolytic activities of human natural killer cells and dendritic cells. Toxins 2013; 5: 1932–1947.

    Article  CAS  Google Scholar 

  27. Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, Mao H et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med 2012; 18: 1827–1834.

    Article  CAS  Google Scholar 

  28. Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J et al. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol 2012; 188: 2509–2515.

    Article  CAS  Google Scholar 

  29. Halfteck GG, Elboim M, Gur C, Achdout H, Ghadially H, Mandelboim O . Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J Immunol 2009; 182: 2221–2230.

    Article  CAS  Google Scholar 

  30. Hudspeth K, Silva-Santos B, Mavilio D . Natural cytotoxicity receptors: broader expression patterns and functions in innate and adptive immune cells. Front Immunol 2013; 4: 1–15.

    Article  CAS  Google Scholar 

  31. Betts MR, Brenchley JM, Price DA, de Rosa SC, Douek DC, Roederer M et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003; 281: 65–78.

    Article  CAS  Google Scholar 

  32. Cohnen A, Chiang SC, Stojanovic A, Schmidt H, Claus M, Saftig P et al. Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood 2013; 122: 1411–1418.

    Article  CAS  Google Scholar 

  33. Dibbert S, Clement B, Skak-Nielsen T, Mrowietz U, Rostami-Yazdi M . Detection of fumarate-glutathione adducts in the portal vein blood of rats: evidence for rapid dimethylfumarate metabolism. Arch Dermatol Res 2013; 305: 447–451.

    Article  CAS  Google Scholar 

  34. Sherry RM, Rosenberg SA, Yang JC . Relapse after response to interleukin-2-based immunotherapy: patterns of progression and response to retreatment. J Immunother 1991; 10: 371–375.

    Article  CAS  Google Scholar 

  35. Tang H, Lu JY, Zheng X, Yang Y, Reagan JD . The psoriasis drug monomethylfumarate is a potent nicotinic acid receptor agonist. Biochem Biophys Res Commun 2008; 375: 562–565.

    Article  CAS  Google Scholar 

  36. Chen H, Assmann JC, Krenz A, Rahman M, Grimm M, Karsten CM et al. Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate's protective effect in EAE. J Clin Invest 2014; 124: 2188–2192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported through funding from the University of Oslo, Biogen-Idec Global, Inc. Vivi Irene Hansens Funds for Systemic Lupus Erythematosus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzam A Maghazachi.

Ethics declarations

Competing interests

Lars-Egil Fallang and Glen Gundersen are employees of Biogen-Idec Global, Inc., Norway. Biogen-Idec did not interfere with the design of the experiments or with the analysis and presentation of the data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vego, H., Sand, K., Høglund, R. et al. Monomethyl fumarate augments NK cell lysis of tumor cells through degranulation and the upregulation of NKp46 and CD107a. Cell Mol Immunol 13, 57–64 (2016). https://doi.org/10.1038/cmi.2014.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.114

Keywords

Search

Quick links