Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Platelets promote allergic asthma through the expression of CD154

Abstract

Platelet activation is associated with multiple immune responses and the pathogenesis of various immune-related diseases. However, the exact role and the underlying mechanism of platelets in the progression of allergic asthma remain largely unclear. In this study, we demonstrate that during antigen sensitization, platelets can be activated by ovalbumin (OVA) aerosol via the upregulation of CD154 (CD40L) expression. Platelet transfer promoted allergic asthma progression by inducing more severe leukocyte infiltration and lung inflammation, elevated IgE production and strengthened T helper 2 (Th2) responses in asthma-induced mice. Accordingly, platelet depletion compromised allergic asthma progression. Cd154-deficient platelets failed to promote asthma development, indicating the requirement of CD154 for platelets to promote asthma progression. The mechanistic study showed that platelets inhibited the induction of Foxp3+ regulatory T cells both in vivo and in vitro at least partially through CD154, providing an explanation for the increase of Th2 responses by platelet transfer. Our study reveals the previously unknown role of platelet CD154 in the promotion of asthma progression by polarizing Th2 responses and inhibiting regulatory T-cell generation and thus provides a potential clue for allergic disease interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Semple JW, Italiano JE Jr, Freedman J . Platelets and the immune continuum. Nat Rev Immunol 2011; 11: 264–274.

    Article  CAS  PubMed  Google Scholar 

  2. Yeaman MR . Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014; 12: 426–437.

    Article  CAS  PubMed  Google Scholar 

  3. Morrell CN1, Aggrey AA, Chapman LM, Modjeski KL . Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123: 2759–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mantovani A1, Garlanda C . Platelet-macrophage partnership in innate immunity and inflammation. Nat Immunol 2013; 14: 768–770.

    Article  CAS  PubMed  Google Scholar 

  5. Grewal IS1, Flavell RA . CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16: 111–135.

    Article  CAS  PubMed  Google Scholar 

  6. Henn V, Slupsky JR, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591–594.

    Article  CAS  PubMed  Google Scholar 

  7. Elzey BD, Grant JF, Sinn HW, Nieswandt B, Waldschmidt TJ, Ratliff TL . Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol 2005; 78: 80–84.

    Article  CAS  PubMed  Google Scholar 

  8. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL . Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 2008; 111: 5028–5036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elzey BD, Schmidt NW, Crist SA, Kresowik TP, Harty JT, Nieswandt B et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 2008; 111: 3684–3691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 2005; 11: 1167–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 2003; 19: 9–19.

    Article  CAS  PubMed  Google Scholar 

  12. Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ . Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 1997; 23: 379–385.

    Article  CAS  PubMed  Google Scholar 

  13. Davì G, Patrono C . Platelet activation and atherothrombosis. N Engl J Med 2007; 357: 2482–2494.

    Article  PubMed  Google Scholar 

  14. Russ M, Seliger B, Hauptmann S, Marty R, Bukur J, Eriksson U et al. Platelet-depletion ameliorates cardiac function and disease severity in experimental autoimmune myocarditis. Circulation 2008; 118: S_516.

    Google Scholar 

  15. Duffau P, Seneschal J, Nicco C, Richez C, Lazaro E, Douchet I et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2010; 2: 47ra63.

    Article  PubMed  Google Scholar 

  16. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327: 580–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang F, Wang NS, Yan CG, Li JH, Tang LQ . The significance of platelet activation in rheumatoid arthritis. Clin Rheumatol 2007; 26: 768–771.

    Article  PubMed  Google Scholar 

  18. Gasparyan AY, Stavropoulos-Kalinoglou A, Mikhailidis DP, Douglas KM, Kitas GD . Platelet function in rheumatoid arthritis: arthritic and cardiovascular implications. Rheumatol Int 2011; 31: 153–164.

    Article  CAS  PubMed  Google Scholar 

  19. Pamuk GE, Vural O, Turgut B, Demir M, Pamuk ON, Cakir N . Increased platelet activation markers in rheumatoid arthritis: are they related with subclinical atherosclerosis? Platelets 2008; 19: 146–154.

    Article  CAS  PubMed  Google Scholar 

  20. Holgate ST . Innate and adaptive immune responses in asthma. Nat Med 2012; 18: 673–683.

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto H, Nagata M, Tabe K, Kimura I, Kiuchi H, Sakamoto Y et al. The evidence of platelet activation in bronchial asthma. J Allergy Clin Immunol 1993; 91: 79–87.

    Article  CAS  PubMed  Google Scholar 

  22. Pitchford SC, Page CP . Platelet activation in asthma: integral to the inflammatory response. Clin Exp Allergy 2006; 36: 399–401.

    Article  CAS  PubMed  Google Scholar 

  23. Benton AS, Kumar N, Lerner J, Wiles AA, Foerster M, Teach SJ et al. Airway platelet activation is associated with airway eosinophilic inflammation in asthma. J Investig Med 2010; 58: 987–990.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kowal K, Pampuch A, Kowal-Bielecka O, Iacoviello L, Bodzenta-Lukaszyk A . Soluble CD40 ligand in asthma patients during allergen challenge. J Thromb Haemost 2006; 4: 2718–2720.

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Han C, Xie B, Wu Y, Liu S, Chen K et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nat Immunol 2014; 15: 612–622.

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Han C, Xie B, Hu X, Yu Q, Shi L et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 2013; 31: 467–478.

    Article  Google Scholar 

  27. Li Q, Guo Z, Xu X, Xia S, Cao X . Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. Eur J Immunol 2008; 38: 2751–2761

    Article  CAS  PubMed  Google Scholar 

  28. Barrett NA, Austen KF . Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 2009; 31: 425–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hansbro PM, Kaiko GE, Foster PS . Cytokine/anti-cytokine therapy—novel treatments for asthma? Br J Pharmacol 2011; 163: 81–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Propst SM, Denson R, Rothstein E, Estell K, Schwiebert LM . Proinflammatory and Th2-derived cytokines modulate CD40-mediated expression of inflammatory mediators in airway epithelia: implications for the role of epithelial CD40 in airway inflammation. J Immunol 2000; 165: 2214–2221.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki M, Zheng X, Zhang X, Ichim TE, Sun H, Kubo N et al. Inhibition of allergic responses by CD40 gene silencing. Allergy 2009; 64: 387–397.

    Article  CAS  PubMed  Google Scholar 

  32. Hong GU, Park BS, Park JW, Kim SY, Ro JY . IgE production in CD40/CD40L cross-talk of B and mast cells and mediator release via TGase 2 in mouse allergic asthma. Cell Signal 2013; 25: 1514–1525.

    Article  CAS  PubMed  Google Scholar 

  33. Park JH, Chang HS, Park CS, Jang AS, Park BL, Rhim TY et al. Association analysis of CD40 polymorphisms with asthma and the level of serum total IgE. Am J Respir Crit Care Med 2007; 175: 775–782.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi H, Ebihara S, Kanda A, Kamanaka M, Sato T, Habu S et al. Increased susceptibility to airway responses in CD40-deficient mice. Clin Exp Immunol 2003; 133: 22–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA . Role of Treg in immune regulation of allergic diseases. Eur J Immunol 2010; 40: 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  36. Jenabian MA, Patel M, Kema I, Vyboh K, Kanagaratham C, Radzioch D et al. Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T-cell expansion in HIV infection. Clin Exp Immunol 2014; doi: 10.1111/cei.12396.

    Article  CAS  Google Scholar 

  37. Huang J, Jochems C, Talaie T, Anderson A, Jales A, Tsang KY et al. Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood 2012; 120: 3030–3038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng J, Liu Y, Lau YL, Tu W . CD40-activated B cells are more potent than immature dendritic cells to induce and expand CD4+ regulatory T cells. Cell Mol Immunol 2010; 7: 44–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 4317–4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gerdes N, Zhu L, Ersoy M, Hermansson A, Hjemdahl P, Hu H et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106: 353–362.

    Article  CAS  PubMed  Google Scholar 

  41. Vaitaitis GM, Wagner DH Jr . CD40 interacts directly with RAG1 and RAG2 in autoaggressive T cells and Fas prevents CD40-induced RAG expression. Cell Mol Immunol 2013; 10: 483–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R Zhang and N Dong for their technical assistance. This work was supported by the National Key Basic Research Program of China (2013CB530502) and the National Natural Science Foundation of China (31270966, 81123006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuetao Cao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Zhu, T., Liu, J. et al. Platelets promote allergic asthma through the expression of CD154. Cell Mol Immunol 12, 700–707 (2015). https://doi.org/10.1038/cmi.2014.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.111

Keywords

This article is cited by

Search

Quick links