Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma

Abstract

Sensitization to fungi often leads to a severe form of asthma that is particularly difficult to manage clinically, resulting in increased morbidity and hospitalizations in these patients. Although B lymphocytes might exacerbate asthma symptoms through the production of IgE, these cells might also be important in the protective response against inhaled fungi. Through cytokine release and T-cell interactions, these lymphocytes might also influence the development and maintenance of airway wall fibrosis. JH−/− mice lack the JH gene for the heavy chain component of antibodies, which is critical for B-cell function and survival. These animals have facilitated the elucidation of the role of B lymphocytes in a number of immune responses; however, JH−/− mice have not been used to study fungal allergy. In this study, we examined the role of B lymphocytes using an Aspergillus fumigatus murine fungal aeroallergen model that mimics human airway disease that is triggered by environmental fungal exposure. We compared disease progression in sensitized wild-type BALB/c and JH−/− mice that were exposed to repeated fungal exposure and found no differences in airway hyperresponsiveness, overall pulmonary inflammation or collagen deposition around the large airways. However, the levels of the Th2-type cytokines IL-4 and IL-13 were significantly attenuated in the airways of JH−/− mice relative to the BALB/c controls. By contrast, levels of the inflammatory cytokines IL-17A and IL-6 were significantly elevated in the JH−/− animals, and there was significantly more robust airway eosinophilia and neutrophilia than in control animals. Taken together, these findings demonstrate that B lymphocytes help to regulate granulocytic responses to fungal exposure in the pulmonary compartment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cabana MD, Kunselman SJ, Nyenhuis SM, Wechsler ME . Researching asthma across the ages: insights from the National Heart, Lung, and Blood Institute's Asthma Network. J Allergy Clin Immunol 2014; 133: 27–33.

    Article  Google Scholar 

  2. Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol 2012; 129: 280–291; quiz 292–293.

    Article  Google Scholar 

  3. Lewkowich IP, Herman NS, Schleifer KW, Dance MP, Chen BL, Dienger KM et al. CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 2005; 202: 1549–1561.

    Article  CAS  Google Scholar 

  4. Lindell DM, Berlin AA, Schaller MA, Lukacs NW . B cell antigen presentation promotes Th2 responses and immunopathology during chronic allergic lung disease. PLoS One 2008; 3: e3129.

    Article  Google Scholar 

  5. Kita H . Eosinophils: multifunctional and distinctive properties. Int Arch Allergy Immunol 2013; 161( Suppl 2): 3–9.

    Article  Google Scholar 

  6. Hong CM, Galvagno SM Jr . Patients with chronic pulmonary disease. Med Clin N Am 2013; 97: 1095–1107.

    Article  Google Scholar 

  7. Denning DW, O'Driscoll BR, Hogaboam CM, Bowyer P, Niven RM . The link between fungi and severe asthma: a summary of the evidence. Eur Respir J 2006; 27: 615–26.

    Article  CAS  Google Scholar 

  8. Agarwal R, Chakrabarti A, Shah A, Gupta D, Meis JF, Guleria R et al. Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. Clin Exp Allergy 2013; 43: 850–873.

    Article  CAS  Google Scholar 

  9. Rosenberg HF, Dyer KD, Foster PS . Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 2013; 13: 9–22.

    Article  CAS  Google Scholar 

  10. Ghosh S, Hoselton SA, Dorsam GP, Schuh JM . Eosinophils in fungus-associated allergic pulmonary disease. Front Pharmacol 2013; 4: 8.

    Article  CAS  Google Scholar 

  11. Kita H . Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev 2011; 242: 161–177.

    Article  CAS  Google Scholar 

  12. Murdock BJ, Shreiner AB, McDonald RA, Osterholzer JJ, White ES, Toews GB et al. Coevolution of TH1, TH2, and TH17 responses during repeated pulmonary exposure to Aspergillus fumigatus conidia. Infect Immun 2011; 79: 125–135.

    Article  CAS  Google Scholar 

  13. Macdowell AL, Peters SP . Neutrophils in asthma. Curr Allergy Asthma Rep 2007; 7: 464–468.

    Article  CAS  Google Scholar 

  14. Ghosh S, Hoselton SA, Schuh JM . Characterization of CD19+CD23+ B2 lymphocytes in the allergic airways of BALB/c mice in response to the inhalation of Aspergillus fumigatus conidia. Open Immunol J 2012; 5: 46–54.

    Article  CAS  Google Scholar 

  15. Jiang D, Liang J, Noble PW . Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91: 221–264.

    Article  CAS  Google Scholar 

  16. Ghosh S, Samarasinghe AE, Hoselton SA, Dorsam GP, Schuh JM . Hyaluronan deposition and co-localization with inflammatory cells and collagen in a murine model of fungal allergic asthma. Inflamm Res 2014; 63: 475–484.

    Article  CAS  Google Scholar 

  17. Hoselton SA, Samarasinghe AE, Seydel JM, Schuh JM . An inhalation model of airway allergic response to inhalation of environmental Aspergillus fumigatus conidia in sensitized BALB/c mice. Med Mycol 2010; 48: 1056–1065.

    Article  Google Scholar 

  18. Samarasinghe AE, Hoselton SA, Schuh JM . A comparison between intratracheal and inhalation delivery of Aspergillus fumigatus conidia in the development of fungal allergic asthma in C57BL/6 mice. Fungal Biol 2011; 115: 21–29.

    Article  CAS  Google Scholar 

  19. Bice DE, Gray RH, Evans MJ, Muggenburg BA . Identification of plasma cells in lung alveoli and interstitial tissues after localized lung immunization. J Leuk Biol 1987; 41: 1–7.

    Article  CAS  Google Scholar 

  20. Takhar P, Corrigan CJ, Smurthwaite L, O'Connor BJ, Durham SR, Lee TH et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol 2007; 119: 213–218.

    Article  CAS  Google Scholar 

  21. Gould HJ, Sutton BJ . IgE in allergy and asthma today. Nat Rev Immunol 2008; 8: 205–217.

    Article  CAS  Google Scholar 

  22. Zhang M, Murphy RF, Agrawal DK . Decoding IgE Fc receptors. Immunol Res 2007; 37: 1–16.

    Article  Google Scholar 

  23. Rolinck-Werninghaus C, Wahn U, Hamelmann E . Anti-IgE therapy in allergic asthma. Curr Drug Targets Inflamm Allergy 2005; 4: 551–564.

    Article  CAS  Google Scholar 

  24. Buhl R . Anti-IgE antibodies for the treatment of asthma. Curr Opin Pulmon Med 2005; 11: 27–34.

    CAS  Google Scholar 

  25. Nowak D . Management of asthma with anti-immunoglobulin E: a review of clinical trials of omalizumab. Respir Med 2006; 100: 1907–1917.

    Article  Google Scholar 

  26. Knutsen AP . Immunopathology and immunogenetics of allergic bronchopulmonary aspergillosis. J Allergy (Cairo) 2011; 2011: 785983.

    Google Scholar 

  27. Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M et al. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med 2010; 207: 2907–2919.

    Article  CAS  Google Scholar 

  28. Flicker S, Gadermaier E, Madritsch C, Valenta R . Passive immunization with allergen-specific antibodies. Curr Top Microbiol Immunol 2011; 820: 141–159.

    Google Scholar 

  29. Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 1993; 5: 647–656.

    Article  CAS  Google Scholar 

  30. Hogaboam CM, Blease K, Mehrad B, Steinhauser ML, Standiford TJ, Kunkel SL et al. Chronic airway hyperreactivity, goblet cell hyperplasia, and peribronchial fibrosis during allergic airway disease induced by Aspergillus fumigatus. Am J Pathol 2000; 156: 723–732.

    Article  CAS  Google Scholar 

  31. Ghosh S, Samarasinghe AE, Hoselton SA, Dorsam GP, Schuh JM . Hyaluronan deposition and co-localization with inflammatory cells and collagen in a murine model of fungal allergic asthma. Inflamm Res 2014; 63: 475–484.

    Article  CAS  Google Scholar 

  32. Ghosh S, Hoselton SA, Schuh JM . mu-chain-deficient mice possess B-1 cells and produce IgG and IgE, but not IgA, following systemic sensitization and inhalational challenge in a fungal asthma model. J Immunol 2012; 189: 1322–1329.

    Article  CAS  Google Scholar 

  33. Chung KF . Inflammatory biomarkers in severe asthma. Curr Opin Pulmon Med 2012; 18: 35–41.

    Article  CAS  Google Scholar 

  34. de Filippo K, Henderson RB, Laschinger M, Hogg N . Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol 2008; 180: 4308–4315.

    Article  CAS  Google Scholar 

  35. Conroy DM, Williams TJ . Eotaxin and the attraction of eosinophils to the asthmatic lung. Respir Res 2001; 2: 150–156.

    Article  CAS  Google Scholar 

  36. Pease JE, Williams TJ . Eotaxin and asthma. Curr Opin Pharmacol 2001; 1: 248–253.

    Article  CAS  Google Scholar 

  37. Chien JW, Lin CY, Yang KD, Lin CH, Kao JK, Tsai YG . Increased IL-17A secreting CD4+ T cells, serum IL-17 levels and exhaled nitric oxide are correlated with childhood asthma severity. Clin Exp Allergy 2013; 43: 1018–1026.

    Article  CAS  Google Scholar 

  38. Gladiator A, Wangler N, Trautwein-Weidner K, Leibund Gut-Landmann S . Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 2013; 190: 521–525.

    Article  CAS  Google Scholar 

  39. Agache I, Ciobanu C, Agache C, Anghel M . Increased serum IL-17 is an independent risk factor for severe asthma. Respir Med 2010; 104: 1131–1137.

    Article  Google Scholar 

  40. Smith KA, Maizels RM . IL-6 controls susceptibility to helminth infection by impeding Th2 responsiveness and altering the Treg phenotype in vivo. Eur J Immunol 2014; 44: 150–161.

    Article  CAS  Google Scholar 

  41. Pedroza M, Schneider DJ, Karmouty-Quintana H, Coote J, Shaw S, Corrigan R et al. Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PLoS One 2011; 6: e22667.

    Article  CAS  Google Scholar 

  42. Hamelmann E, Vella AT, Oshiba A, Kappler JW, Marrack P, Gelfand EW . Allergic airway sensitization induces T cell activation but not airway hyperresponsiveness in B cell-deficient mice. Proc Natl Acad Sci USA 1997; 94: 1350–1355.

    Article  CAS  Google Scholar 

  43. Jungsuwadee P, Benkovszky M, Dekan G, Stingl G, Epstein MM . Repeated aerosol allergen exposure suppresses inflammation in B-cell-deficient mice with established allergic asthma. Int Arch Allergy Immunol 2004; 133: 40–48.

    Article  CAS  Google Scholar 

  44. de Bruijn ML, Nieland JD, Schumacher TN, Ploegh HL, Kast WM, Melief CJ . Mechanisms of induction of primary virus-specific cytotoxic T lymphocyte responses. Eur J Immunol 1992; 22: 3013–3020.

    Article  CAS  Google Scholar 

  45. Guery JC, Adorini L . Dendritic cells are the most efficient in presenting endogenous naturally processed self-epitopes to class II-restricted T cells. J Immunol 1995; 154: 536–544.

    CAS  PubMed  Google Scholar 

  46. Zhong G, Reis e Sousa C, Germain RN . Antigen-unspecific B cells and lymphoid dendritic cells both show extensive surface expression of processed antigen-major histocompatibility complex class II complexes after soluble protein exposure in vivo or in vitro. J Exp Med 1997; 186: 673–682.

    Article  CAS  Google Scholar 

  47. Qi H, Egen JG, Huang AY, Germain RN . Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 2006; 312: 1672–1676.

    Article  CAS  Google Scholar 

  48. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 2006; 24: 203–215.

    Article  CAS  Google Scholar 

  49. Moulin V, Andris F, Thielemans K, Maliszewski C, Urbain J, Moser M . B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J Exp Med 2000; 192: 475–482.

    Article  CAS  Google Scholar 

  50. Lundy SK, Berlin AA, Martens TF, Lukacs NW . Deficiency of regulatory B cells increases allergic airway inflammation. Inflamm Res 2005; 54: 514–521.

    Article  CAS  Google Scholar 

  51. Mizoguchi A, Bhan AK . A case for regulatory B cells. JImmunol 2006; 176: 705–710.

    Article  CAS  Google Scholar 

  52. Yu P, Wang Y, Chin RK, Martinez-Pomares L, Gordon S, Kosco-Vibois MH et al. B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. J Immunol 2002; 168: 5117–5123.

    Article  CAS  Google Scholar 

  53. Wang P, Zheng SG . Regulatory T cells and B cells: implication on autoimmune diseases. Int J Clin Exp Pathol 2013; 6: 2668–2674.

    PubMed  PubMed Central  Google Scholar 

  54. Ray A, Basu S, Williams CB, Salzman NH, Dittel BN . A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J Immunol 2012; 188: 3188–3198.

    Article  CAS  Google Scholar 

  55. Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN . B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 2007; 178: 3447–3456.

    Article  CAS  Google Scholar 

  56. Doganci A, Sauer K, Karwot R, Finotto S . Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin Rev Allergy Immunol 2005; 28: 257–270.

    Article  CAS  Google Scholar 

  57. Nembrini C, Marsland BJ, Kopf M . IL-17-producing T cells in lung immunity and inflammation. J Allergy Clin Immunol 2009; 23: 986–994; quiz 995–996.

    Article  Google Scholar 

  58. Murdock BJ, Falkowski NR, Shreiner AB, Sadighi Akha AA, McDonald RA, White ES et al. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect Immun 2012; 80: 1424–1436.

    Article  CAS  Google Scholar 

  59. Song C, Luo L, Lei Z, Li B, Liang Z, Liu G et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol 2008; 181: 6117–6124.

    Article  CAS  Google Scholar 

  60. Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 2003; 28: 42–50.

    Article  CAS  Google Scholar 

  61. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H . IL-33-responsive lineage-CD25+ CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 2012; 188: 1503–1513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Pawel Borowicz (North Dakota State University) and the Advanced Imaging and Microscopy Laboratory for imaging support using the Zeiss Z1 AxioObserver inverted microscope (NSF MRI-R2 0959512). We also thank Jessica Ebert for critical reading of the manuscript. These studies were funded by grants from the NIH (1R15HL117254-01 to JMS and 1R15AI101968-01A1 to GPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Ghosh.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Hoselton, S., Asbach, S. et al. B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cell Mol Immunol 12, 202–212 (2015). https://doi.org/10.1038/cmi.2014.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.103

Keywords

This article is cited by

Search

Quick links