Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages

Abstract

Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pieters J . Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 2008; 3: 399–407.

    Article  CAS  PubMed  Google Scholar 

  2. Lee J, Hartman M, Kornfeld H . Macrophage apoptosis in tuberculosis. Yonsei Med J 2009; 50: 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kornfeld H, Mancino G, Colizzi V . The role of macrophage cell death in tuberculosis. Cell Death Differ 1999; 6: 71–78.

    Article  CAS  PubMed  Google Scholar 

  4. Fairbairn IP . Macrophage apoptosis in host immunity to mycobacterial infections. Biochem Soc Trans 2004; 32: 496–498.

    Article  CAS  PubMed  Google Scholar 

  5. Winau F, Weber S, Sad S, de Diego J, Hoops SL, Breiden B et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 2006; 24: 105–117.

    Article  CAS  PubMed  Google Scholar 

  6. Keane J, Shurtleff B, Kornfeld H . TNF-dependent BALB/c murine macrophage apoptosis following Mycobacterium tuberculosis infection inhibits bacillary growth in an IFN-gamma independent manner. Tuberculosis (Edinb) 2002; 82: 55–61.

    Article  CAS  Google Scholar 

  7. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG . Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 2008; 9: 1189–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG . Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol 1998; 161: 2636–2641.

    CAS  PubMed  Google Scholar 

  9. Michels J, Johnson PW, Packham G . Mcl-1. Int J Biochem Cell Biol 2005; 37: 267–271.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou P, Qian L, Bieszczad CK, Noelle R, Binder M, Levy NB et al. Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood 1998; 92: 3226–3239.

    CAS  PubMed  Google Scholar 

  11. Liu H, Ma Y, Cole SM, Zander C, Chen KH, Karras J et al. Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival. Blood 2003; 102: 344–352.

    Article  CAS  PubMed  Google Scholar 

  12. Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 2004; 104: 2886–2892.

    Article  CAS  PubMed  Google Scholar 

  13. Le Gouill S, Podar K, Harousseau JL, Anderson KC . Mcl-1 regulation and its role in multiple myeloma. Cell Cycle 2004; 3: 1259–1262.

    Article  CAS  PubMed  Google Scholar 

  14. Wang JM, Lai MZ, Yang-Yen HF . Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway. Mol Cell Biol 2003; 23: 1896–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF . The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999; 19: 6195–6206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu XH, Yu EZ, Li YY, Kagan E . HIF-1alpha has an anti-apoptotic effect in human airway epithelium that is mediated via Mcl-1 gene expression. J Cell Biochem 2006; 97: 755–765.

    Article  CAS  PubMed  Google Scholar 

  17. Thomas LW, Lam C, Edwards SW . Mcl-1: the molecular regulation of protein function. FEBS Lett 2010; 584: 2981–2989.

    Article  CAS  PubMed  Google Scholar 

  18. Marriott HM, Bingle CD, Read RC, Braley KE, Kroemer G, Hellewell PG et al. Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J Clin Invest 2005; 115: 359–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR . Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol 2003; 170: 430–437.

    Article  CAS  PubMed  Google Scholar 

  20. Kausalya S, Somogyi R, Orlofsky A, Prystowsky MB . Requirement of A1-a for bacillus Calmette-Guerin-mediated protection of macrophages against nitric oxide-induced apoptosis. J Immunol 2001; 166: 4721–4727.

    Article  CAS  PubMed  Google Scholar 

  21. Sohn H, Lee KS, Kim SY, Shin DM, Shin SJ, Jo EK et al. Induction of cell death in human macrophages by a highly virulent Korean Isolate of Mycobacterium tuberculosis and the virulent strain H37Rv. Scand J Immunol 2009; 69: 43–50.

    Article  CAS  PubMed  Google Scholar 

  22. Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH et al. Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol 2008; 38: 174–83.

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Chung AY, Wu I, Foldi J, Chen J, Ji JD et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity 2008; 29: 691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foldi J, Chung AY, Xu H, Zhu J, Outtz HH, Kitajewski J et al. Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. J Immunol 2010; 185: 5023–5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Narayana Y, Balaji KN . NOTCH1 up-regulation and signaling involved in Mycobacterium bovis BCG-induced SOCS3 expression in macrophages. J Biol Chem 2008; 283: 12501–12511.

    Article  CAS  PubMed  Google Scholar 

  26. Ito T, Schaller M, Hogaboam CM, Standiford TJ, Sandor M, Lukacs NW et al. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J Clin Invest 2009; 119: 33–46.

    CAS  PubMed  Google Scholar 

  27. Miele L, Osborne B . Arbiter of differentiation and death: Notch signaling meets apoptosis. J Cell Physiol 1999; 181: 393–409.

    Article  CAS  PubMed  Google Scholar 

  28. Rosati E, Sabatini R, de Falco F, del Papa B, Falzetti F, di Ianni M et al. gamma-Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch down-regulation. Int J Cancer 2013; 132: 1940–1953.

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta CT) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  30. Wongchana W, Palaga T . Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell Mol Immunol 2011; 8: 1–8.

    Article  Google Scholar 

  31. Palaga T, Miele L, Golde TE, Osborne BA . TCR-mediated Notch signaling regulates proliferation and IFN-gamma production in peripheral T cells. J Immunol 2003; 171: 3019–3024.

    Article  CAS  PubMed  Google Scholar 

  32. Wu L, Griffin JD . Modulation of Notch signaling by mastermind-like (MAML) transcriptional co-activators and their involvement in tumorigenesis. Semin Cancer Biol 2004; 14: 348–356.

    Article  CAS  PubMed  Google Scholar 

  33. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 2012; 13: 642–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee J, Repasy T, Papavinasasundaram K, Sassetti C, Kornfeld H . Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages. PLoS One 6: e18367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edwards AD, Manickasingham SP, Sporri R, Diebold SS, Schulz O, Sher A et al. Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J Immunol 2002; 169: 3652–3660.

    Article  CAS  PubMed  Google Scholar 

  36. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  37. Jehn BM, Bielke W, Pear WS, Osborne BA . Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol 1999; 162: 635–638.

    CAS  PubMed  Google Scholar 

  38. Deftos ML, He YW, Ojala EW, Bevan MJ . Correlating notch signaling with thymocyte maturation. Immunity 1998; 9: 777–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oishi K, Kamakura S, Isazawa Y, Yoshimatsu T, Kuida K, Nakafuku M et al. Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Dev Biol 2004; 276: 172–184.

    Article  CAS  PubMed  Google Scholar 

  40. Carmena A, Buff E, Halfon MS, Gisselbrecht S, Jimenez F, Baylies MK et al. Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev Biol 2002; 244: 226–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Stefan H. E. Kaufmann, Dr Barbara Osborne and Dr Todd Golde for sharing reagents. The authors thank Dr Jorg Schriber and Dr Masami Nakatsu for their help with ChIP and ChIP-on-chip analysis. This work was partly supported by the Thailand Research Fund Grant No. RSA5280014, Research Foundation Enhancement from Chulalongkorn University (Ratchadaphiseksomphot Endowment Fund) and by the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture and the Higher Education Research Promotion and National Research University Project of Thailand, the Office of the Higher Education Commission (AS613A) and The Fogarty International Research Collaborative Award (Grant No. R03 TW008420-01A1, NIH, Bethesda, MD USA). W. Wongchana was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (PHD/0337/2551) (NIH, Bethesda, MD, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanapat Palaga.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palaga, T., Ratanabunyong, S., Pattarakankul, T. et al. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages. Cell Mol Immunol 10, 444–452 (2013). https://doi.org/10.1038/cmi.2013.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.22

Keywords

This article is cited by

Search

Quick links