Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Targeting Janus tyrosine kinase 3 (JAK3) with an inhibitor induces secretion of TGF-β by CD4+ T cells

Abstract

Regulatory T cells (Tregs) are critical for the peripheral maintenance of the autoreactive T cells in autoimmune disorders such as type 1 diabetes (T1D). Pharmacological inhibition of Janus tyrosine kinase 3 (JAK3) has been proposed as a basis for new treatment modalities against autoimmunity and allogeneic responses. Targeting JAK3 with an inhibitor has previously been shown to exhibit protective action against the development of T1D in non-obese diabetic (NOD) mice. As the mechanism of such preventative action has been unknown, we hypothesized that JAK3 inhibition induces generation of Tregs. Here, we show that the JAK3 inhibitor 4-(4′-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) suppresses proliferation of short-term cultured NOD CD4+ T cells through induction of apoptosis, while promoting survival of a particular population of long-term cultured cells. It was found that the surviving cells were not of the CD4+CD25+FoxP3+ phenotype. They secreted decreased amounts of IL-10, IL-4 and interferon (IFN)-γ compared to the cells not exposed to the optimal concentrations of JAK3 inhibitor. However, an elevated transforming growth factor (TGF)-β secretion was detected in their supernatants. In vivo treatment of prediabetic NOD mice with WHI-P131 did not affect the frequency and number of splenic and pancreatic lymph node CD4+FoxP3+ Tregs, while generating an elevated numbers of CD4+FoxP3 TGF-β-secreting T cells. In conclusion, our data suggest an induction of TGF-β-secreting CD4+ T cells as the underlying mechanism for antidiabetogenic effects obtained by the treatment with a JAK3 inhibitor. To our knowledge, this is the first report of the JAK3 inhibitor activity in the context of the murine Tregs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jaeckel E, von Boehmer H, Manns MP . Antigen-specific FoxP3-transduced T cells can control established type 1 diabetes. Diabetes 2005; 54: 306–310.

    Article  CAS  PubMed  Google Scholar 

  2. Tang Q, Bluestone JA . Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev 2006; 212: 217–237.

    Article  CAS  PubMed  Google Scholar 

  3. Tang Q, Henriksen KJ, Mingying B, Finger EB, Szot G, Ye J et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004; 199: 1455–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. You S, Thieblemont N, Alyanakian MA, Bach JF, Chatenoud L . Transforming growth factor-beta and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol Rev 2006; 212: 185–202.

    Article  CAS  PubMed  Google Scholar 

  5. Riley RL, June CH, Blazar BR . Human T regulatory cell therapy: take a billion or so and call me in the morning. J Immunity 2009; 30: 656–665.

    Article  CAS  Google Scholar 

  6. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Shohei H, Fehervari Z et al. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212: 8–27.

    Article  CAS  PubMed  Google Scholar 

  7. Curotto de Lafaille MA, Lafaille JJ . Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009; 30: 626–635.

    Article  CAS  PubMed  Google Scholar 

  8. Workman CJ, Workman-Szymczak AL, Collison LW, Pillai MR, Vignali DA . The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66: 2603–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ihle JN, Kerr IR . Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 1995; 11: 69–74.

    Article  CAS  PubMed  Google Scholar 

  10. Leonard WJ, O'Shea JJ . Jaks and Stats: biological implications. Annu Rev Immunol 1998; 16: 293–322.

    Article  CAS  PubMed  Google Scholar 

  11. Shuai K, Liu B . Regulation of JAK–STAT signaling in the immune system. Nat Rev Immunol 2003; 3: 900–911.

    Article  CAS  PubMed  Google Scholar 

  12. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802.

    Article  CAS  PubMed  Google Scholar 

  13. Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995; 3: 771–782.

    Article  CAS  PubMed  Google Scholar 

  14. O'Shea JJ, Husa M, Li D, Hofmann SR, Watford W, Roberts JL et al. Jak3 and the pathogenesis of severe combined immunodeficiency. Mol Immunol 2004; 41: 727–737.

    Article  CAS  PubMed  Google Scholar 

  15. Cetkovic-Cvrlje M, Tibbles HE . Therapeutic potential of Janus kinase 3 (JAK3) inhibitors. Curr Pharm Des 2004; 10: 176–84.

    Article  Google Scholar 

  16. O'Shea J, Pesu M, Borie DC, Changelian PS . A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 2004; 3: 555–564.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson LJ . Recent patents in the discovery of small molecule inhibitors of JAK3. Expert Opin Ther Pat 2010; 20: 609–623.

    Article  CAS  PubMed  Google Scholar 

  18. Xiong Z, Ma A, Chen H . JAK3 inhibitors in organ transplantation and autoimmune disease. Recent Pat Inflamm Allergy Drug Discov 2010; 4: 75–81.

    Article  CAS  PubMed  Google Scholar 

  19. Sudbeck EA, Liu XP, Narla RK, Mahajan S, Ghosh S, Mao C et al. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing anti-leukemic agents. Clin Cancer Res 1999; 5: 1569–1582.

    CAS  PubMed  Google Scholar 

  20. Cetkovic-Cvrlje M, Roers BA, Waurzyniak B, Liu XP, Uckun FM . Targeting Janus kinase 3 to attenuate the severity of acute graft-versus-host disease across the major histocompatibility barrier in mice. Blood 2001; 98: 1607–1613.

    Article  CAS  PubMed  Google Scholar 

  21. Cetkovic-Cvrlje M, Uckun FM . Targeting Janus kinase 3 in the treatment of leukemia and inflammatory diseases. Arch Immunol Ther Exp 2004; 52: 69–82.

    CAS  Google Scholar 

  22. Cetkovic-Cvrlje M, Roers BA, Schonhoff D, Waurzyniak B, Liu XP, Uckun FM . Treatment of post-bone marrow transplant acute graft-versus-host disease with a rationally designed JAK3 inhibitor. Leuk Lymphoma 2002; 43: 1447–1553.

    Article  CAS  PubMed  Google Scholar 

  23. Cetkovic-Cvrlje M, Uckun FM . Dual targeting of Bruton's tyrosine kinase and Janus kinase 3 with rationally designed inhibitors prevents graft-versus-host disease (GVHD) in a murine allogeneic bone marrow transplantation model. Br J Haematol 2004; 126: 821–827.

    Article  CAS  PubMed  Google Scholar 

  24. Cetkovic-Cvrlje M, Dragt AL, Uckun FM . Prevention of islet allograft rejection in diabetic mice by targeting Janus kinase 3 with [4-(4′-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline] (JANEX-1). Drug Res 2003; 53: 648–654.

    CAS  Google Scholar 

  25. Cetkovic-Cvrlje M, Dragt AL, Vassilev A, Liu XP, Uckun FM . Targeting JAK3 with JANEX-1 for prevention of autoimmune type 1 diabtes in NOD mice. Clin Immunol 2003; 106: 213–225.

    Article  CAS  PubMed  Google Scholar 

  26. Demirkiran A, Hendrikx TK, Baan CC, van der Laan LJW . Impact of immunosuppressive drugs on CD4+CD25+FOXP3+ regulatory T cells: does in vitro evidence translate to the clinical setting? Transplantation 2008; 85: 783–789.

    Article  CAS  PubMed  Google Scholar 

  27. Bataglia M, Stabilini A, Roncarolo MG . Rapamycin selctively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005; 105: 4743–4748.

    Article  Google Scholar 

  28. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG . Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 2006; 177: 8338–8347.

    Article  CAS  PubMed  Google Scholar 

  29. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A . Selective survival of naturally occuring human CD4+CD25+FoxP3+ regulatory T cells cultured with rapamycin. J Immunol 2007; 178: 320–329.

    Article  CAS  PubMed  Google Scholar 

  30. Baan CC, van der Mast BJ, Klepper M, Mol WM, Peeters AM, Korevaar SS et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation 2005; 80: 110–117.

    Article  CAS  PubMed  Google Scholar 

  31. Coenen JJ, Koenen HJ, van Rijssen E . Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+CD25+FoxP3+ regulatory T cells. Bone Marrow Transplant 2007; 39: 537–545.

    Article  CAS  PubMed  Google Scholar 

  32. Hamawy MM . Molecular actions of calcineurin inhibitors. Drug News Perspect 2003; 16: 277–282.

    Article  CAS  PubMed  Google Scholar 

  33. Bensinger SJ, Walsh PT, Zhang J, Caroll M, Parsons R, Rathmell JC et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 2004; 172: 5287–5296.

    Article  CAS  PubMed  Google Scholar 

  34. Malek TR, Bayer AL . Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 2004; 4: 665–674.

    Article  CAS  PubMed  Google Scholar 

  35. Olson M, Johnson S, Cetkovic-Cvrlje M . Incidence of type 1 diabetes in the colony of NOD/LtJ mice at St. Cloud State University. J Mn Acad Science 2008; 71: 24.

    Google Scholar 

  36. Cetkovic-Cvrlje M, Gerling IC, Muir A, Atkinson MA, Elliott JF, Leiter EH . Retardation or acceleration of diabetes in NOD/Lt mice mediated by intrathymic administration of candidate beta cell antigens. Diabetes 1997; 46: 1975–1982.

    Article  CAS  PubMed  Google Scholar 

  37. Vieira PL, Christensen JR, Minaee S, O'Neil EJ, Barrat FJ, Boonstra A et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occuring CD4+CD25+ regulatory T cells. J Immunol 2004; 172: 5986–5993.

    Article  CAS  PubMed  Google Scholar 

  38. Uckun FM, Ek O, Liu XP, Chen CL . In vivo toxicity and pharmacokinetic features of the Janus kinase 3 inhibitor WHI-P131 [4-(4′-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline]. Clin Cancer Res 1999; 5: 2954–2962.

    CAS  PubMed  Google Scholar 

  39. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006; 108: 1571–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mayack SR, Berg LJ . Cutting edge: an alternative pathway of CD4+ T cell differentiation is induced following activation in the absence of gamma-chain-dependent cytokine signals. J Immunol 2006; 176: 2059–2063.

    Article  CAS  PubMed  Google Scholar 

  41. van Gurp EA, Schoordijk-Verschoor W, Klepper M, Korevaar SS, Chan G, Weimar W et al. The effect of the JAK inhibitor CP-690, 550 on peripheral immune parameters in stable kidney allograft patients. Transplantation 2009; 87: 79–86.

    Article  CAS  PubMed  Google Scholar 

  42. Rabinovitch A, Suarez-Pinzon WL . Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biochem Biophys 2007; 48: 159–163.

    Article  CAS  PubMed  Google Scholar 

  43. Richer MJ, Straka N, Fang D, Shanina I, Horwitz MS . Regulatory T-cells protect from type 1 diabetes after induction by coxsackievirus infection in the context of transforming growth factor-beta. Diabetes 2008; 57: 1302–1311.

    Article  CAS  PubMed  Google Scholar 

  44. Tonkin DR, Haskins K . Regulatory T cells enter the pancreas during suppression of type 1 diabetes and inhibit effector T cells and macrophages in a TGF-beta-dependent manner. Eur J Immunol 2009; 39: 1313–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Battaglia M, Stabilini A, Draghici E, Migliavacca B, Gregori S, Bonifacio E et al. Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 2006; 55: 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  46. Tian B, Hao J, Zhang Y, Tian L, Yi H, O'Brien TD et al. Upregulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy. Transplantation 2009; 87: 198–206.

    Article  CAS  PubMed  Google Scholar 

  47. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor FoxP3. J Exp Med 2003; 198: 1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H . Inducing and expanding regulatory T cell population by foreign antigen. Nat Immunol 2005; 6: 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  49. Wekerle T . T regulatory cells—what relationship with immunosuppressive agents? Transplant Proc 2008; 40: 13–16.

    Article  Google Scholar 

  50. Monti P, Scirpoli M, Maffi P, Piemonti L, Secchi A, Bonifacio E et al. Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+FOXP3+ regulatory T cells. Diabetes 2008; 57: 2341–2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karagiannidis C, Akdis M, Holopainen P, Woolley NJ, Hense G, Rückert B et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol 2004; 114: 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  52. Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM . Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3+CD4+CD25+ T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 2006; 36: 2139–2149.

    Article  CAS  PubMed  Google Scholar 

  53. Zeiser R, Nguyen VH, Beilhack A, Buess M, Schulz S, Baker J et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood 2006; 108: 390–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lopez M, Clarkson MR, Albin M, Sayegh MH, Najaflan N . A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells. J Am Soc Nephrol 2006; 17: 2844–2853.

    Article  CAS  PubMed  Google Scholar 

  55. Kohm AP, McMahon JS, Podojil JR, Begolka WS, DeGutes M, Kasprowicz DJ et al. Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol 2006; 176: 3301–3305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NSF grant 0821235, SCSU Hellervik Prize and SCSU OSP Faculty Grants to MCC; and SCSU OSP Student Research Grants to MO and KG. We thank the undergraduate research students in the SCSU Immunology Laboratory, especially Fei Chin Tsan, Deshani Perera, Sharad Shresta, Mike Maher, Larita Nandlal, Katie Ertelt and Kah Yong Goh for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Cetkovic-Cvrlje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetkovic-Cvrlje, M., Olson, M. & Ghate, K. Targeting Janus tyrosine kinase 3 (JAK3) with an inhibitor induces secretion of TGF-β by CD4+ T cells. Cell Mol Immunol 9, 350–360 (2012). https://doi.org/10.1038/cmi.2012.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.20

Keywords

Search

Quick links