Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

HMBOX1 negatively regulates NK cell functions by suppressing the NKG2D/DAP10 signaling pathway

Abstract

HMBOX1 is a new member of the homeobox family. Homeobox members have been reported to participate in embryonic development and systemic metabolism, but the function of HMBOX1 remains unclear, especially in the hematopoietic system. Here, we show that HMBOX1 is expressed at a high level in primary human NK cells but is expressed at much lower levels in NK cell lines. Overexpression of HMBOX1 significantly inhibited NK cell activities, including natural cytotoxicity against tumor cells, the level of CD107a (a marker protein for degranulation) and the production of cytolytic proteins (perforin and granzymes). More interestingly, HMBOX1 negatively regulated the expression of NKG2D and the activation of the NKG2D/DAP10 signaling pathway in NK cells. This effect was reversed by knocking down HMBOX1. Taken together, these findings demonstrate that HMBOX1 may act as a negative regulator of NK cell functions via suppressing the NKG2D/DAP10 signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chen S, Saiyin H, Zeng X, Xi J, Liu X, Li X et al. Isolation and functional analysis of human HMBOX1, a homeobox containing protein with transcriptional repressor activity. Cytogenet Genome Res 2006; 114: 131–136.

    Article  CAS  Google Scholar 

  2. Holland PW, Booth HA, Bruford EA . Classification and nomenclature of all human homeobox genes. BMC Biol 2007; 5: 47.

    Article  Google Scholar 

  3. Abramovich C, Humphries RK . Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol 2005; 12: 210–216.

    Article  CAS  Google Scholar 

  4. Zhang M, Chen S, Li Q, Ling Y, Zhang J, Yu L . Characterization of a novel human HMBOX1 splicing variant lacking the homeodomain and with attenuated transcription repressor activity. Mol Biol Rep 2010; 37: 2767–2772.

    Article  CAS  Google Scholar 

  5. Dai J, Wu L, Zhang C, Zheng X, Tian Z, Zhang J . Recombinant expression of a novel human transcriptional repressor HMBOX1 and preparation of anti-HMBOX1 monoclonal antibody. Cell Mol Immunol 2009; 6: 261–268.

    Article  CAS  Google Scholar 

  6. Su L, Zhao HL, Sun CH, Zhao BX, Zhao J, Zhang SL et al. Role of Hmbox1 in endothelial differentiation of bone-marrow stromal cells by a small molecule. ACS Chemical Biology 2010; 5: 1035–43.

    Article  CAS  Google Scholar 

  7. Raulet DH . Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 2004; 5: 996–1002.

    Article  CAS  Google Scholar 

  8. Di Santo JP . Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 2006; 24: 257–286.

    Article  CAS  Google Scholar 

  9. Glimcher LH, Townsend MJ, Sullivan BM, Lord GM . Recent developments in the transcriptional regulation of cytolytic effector cells. Nat Rev Immunol 2004; 4: 900–911.

    Article  CAS  Google Scholar 

  10. Alter G, Malenfant JM, Altfeld M . CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 2004; 294: 15–22.

    Article  CAS  Google Scholar 

  11. Gong JH, Maki G, Klingemann HG . Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994; 8: 652–658.

    CAS  PubMed  Google Scholar 

  12. Pardo J, Balkow S, Anel A, Simon MM . Granzymes are essential for natural killer cell-mediated and perf-facilitated tumor control. Eur J Immunol 2002; 32: 2881–2887.

    Article  CAS  Google Scholar 

  13. Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, French AR et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 2007; 26: 798–811.

    Article  CAS  Google Scholar 

  14. Raulet DH, Guerra N . Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 2009; 9: 568–580.

    Article  CAS  Google Scholar 

  15. Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE . IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 2006; 176: 1490–1497.

    Article  CAS  Google Scholar 

  16. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999; 285: 730–732.

    Article  CAS  Google Scholar 

  17. Upshaw JL, Leibson PJ . NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol 2006; 18: 167–175.

    Article  CAS  Google Scholar 

  18. Awasthi A, Samarakoon A, Dai X, Wen R, Wang D, Malarkannan S . Deletion of PI3K-p85alpha gene impairs lineage commitment, terminal maturation, cytokine generation and cytotoxicity of NK cells. Genes Immun 2008; 9: 522–535.

    Article  CAS  Google Scholar 

  19. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S . Functions of natural killer cells. Nat Immunol 2008; 9: 503–510.

    Article  CAS  Google Scholar 

  20. Lanier LL . Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 2008; 9: 495–502.

    Article  CAS  Google Scholar 

  21. Pandey R, DeStephan CM, Madge LA, May MJ, Orange JS . NKp30 ligation induces rapid activation of the canonical NF-kappaB pathway in NK cells. J Immunol 2007; 179: 7385–7396.

    Article  CAS  Google Scholar 

  22. Chen X, Trivedi PP, Ge B, Krzewski K, Strominger JL . Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci USA 2007; 104: 6329–6334.

    Article  CAS  Google Scholar 

  23. Maasho K, Opoku-Anane J, Marusina AI, Coligan JE, Borrego F . NKG2D is a costimulatory receptor for human naive CD8+ T cells. J Immunol 2005; 174: 4480–4484.

    Article  CAS  Google Scholar 

  24. Zhang C, Zhang J, Niu J, Zhou Z, Zhang J, Tian Z . Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum Immunol 2008; 69: 490–500.

    Article  CAS  Google Scholar 

  25. Zhang C, Zhang J, Niu J, Zhang J, Tian Z . Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine 2008; 42: 128–136.

    Article  CAS  Google Scholar 

  26. Zhang C, Zhang J, Sun R, Feng J, Wei H, Tian Z . Opposing effect of IFNgamma and IFNalpha on expression of NKG2 receptors: negative regulation of IFNgamma on NK cells. Int Immunopharmacol 2005; 5: 1057–1067.

    Article  CAS  Google Scholar 

  27. Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE . IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 2006; 176: 1490–1497.

    Article  CAS  Google Scholar 

  28. Castriconi R, Cantoni C, Della CM, Vitale M, Marcenaro E, Conte R et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 2003; 100: 4120–4125.

    Article  CAS  Google Scholar 

  29. Zhang C, Tian ZG, Zhang J, Feng JB, Zhang JH, Xu XQ . The negative regulatory effect of IFN-gamma on cognitive function of human natural killer cells. Zhonghua Zhong Liu Za Zhi 2004; 26: 324–327.

    CAS  PubMed  Google Scholar 

  30. Karimi M, Cao TM, Baker JA, Verneris MR, Soares L, Negrin RS . Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8+ T cells and NK cells. J Immunol 2005; 175: 7819–7828.

    Article  CAS  Google Scholar 

  31. Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, Coligan JE . The NKG2D receptor: immunobiology and clinical implications. Immunol Res 2008; 40: 18–34.

    Article  CAS  Google Scholar 

  32. Lawrence HJ, Sauvageau G, Humphries RK, Largman C . The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996; 14: 281–291.

    Article  CAS  Google Scholar 

  33. Sunwoo JB, Kim S, Yang L, Naik T, Higuchi DA, Rubenstein JL et al. Distal-less homeobox transcription factors regulate development and maturation of natural killer cells. Proc Natl Acad Sci USA 2008; 105: 10877–10882.

    Article  CAS  Google Scholar 

  34. Zhang B, Zhang J, Tian Z . Comparison in the effects of IL-2, IL-12, IL-15 and IFNalpha on gene regulation of granzymes of human NK cell line NK-92. Int Immunopharmacol 2008; 8: 989–996.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (30901307 and 30671901) and the Ministry of Science and Technology of China (2007AA021000, 2007AA021109 and 2006CB504303).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Zhang, C. & Zhang, J. HMBOX1 negatively regulates NK cell functions by suppressing the NKG2D/DAP10 signaling pathway. Cell Mol Immunol 8, 433–440 (2011). https://doi.org/10.1038/cmi.2011.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.20

Keywords

This article is cited by

Search

Quick links