Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

MLK4 has negative effect on TLR4 signaling

Abstract

The stimulation of Toll-like receptors (TLRs) on macrophages triggers production of proinflammatory cytokines such as tumor-necrosis factor-α (TNF-α). The TNF production is mediated by a series of signaling events and subsequent transcriptional and post-transcriptional activation of the TNF gene. Termination of TLR-mediated cellular signaling is also important for a proper immunoresponse, since sustained cytokine expression can result in immune disorders. Here we identified that mixed-lineage kinase (MLK) 4 is a TLR4-interacting protein. Unlike previously characterized MLK group members, MLK4 cannot act as a mitogen-activated protein kinase kinase kinase (MAP3K) to mediate c-Jun N-terminal kinase (JNK), p38 or extracellular signal-regulated kinase (ERK) activation. Rather, MLK4 appears to be able to inhibit lipopolysaccharide (LPS)-induced activation of the JNK or ERK pathways, but does not have effect on LPS-induced p38 or NF-κB activation. The LPS-induced TNF production in MLK4 knockdown and overexpression cells were also increased and reduced, respectively. These data demonstrate that MLK4 is a negative regulator of TLR4 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Janeway CA Jr, Medzhitov R . Innate immune recognition. Annu Rev Immunol 2002; 20: 197–216.

    Article  CAS  Google Scholar 

  2. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  Google Scholar 

  3. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003; 301: 640–643.

    Article  CAS  Google Scholar 

  4. Biswas SK, Bist P, Dhillon MK, Kajiji T, del Fresno C, Yamamoto M et al. Role for MyD88-independent, TRIF pathway in lipid A/TLR4-induced endotoxin tolerance. J Immunol 2007; 179: 4083–4092.

    Article  CAS  Google Scholar 

  5. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003; 424: 743–748.

    Article  CAS  Google Scholar 

  6. Beutler B . Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004; 430: 257–263.

    Article  CAS  Google Scholar 

  7. Hoffmann A, Baltimore D . Circuitry of nuclear factor kappaB signaling. Immunol Rev 2006; 210: 171–186.

    Article  Google Scholar 

  8. Weston CR, Davis RJ . The JNK signal transduction pathway. Curr Opin Cell Biol 2007; 19: 142–149.

    Article  CAS  Google Scholar 

  9. Cobb MH, Hepler JE, Cheng M, Robbins D . The mitogen-activated protein kinases, ERK1 and ERK2. Semin Cancer Biol 1994; 5: 261–268.

    CAS  PubMed  Google Scholar 

  10. Zarubin T, Han J . Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005; 15: 11–18.

    Article  CAS  Google Scholar 

  11. Cook R, Wu CC, Kang YJ, Han J . The role of the p38 pathway in adaptive immunity. Cell Mol Immunol 2007; 4: 253–259.

    CAS  PubMed  Google Scholar 

  12. Han J, Ulevitch RJ . Limiting inflammatory responses during activation of innate immunity. Nat Immunol 2005; 6: 1198–1205.

    Article  CAS  Google Scholar 

  13. Gallo KA, Johnson GL . Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 2002; 3: 663–672.

    Article  CAS  Google Scholar 

  14. Wang LH, Besirli CG, Johnson EM Jr . Mixed-lineage kinases: a target for the prevention of neurodegeneration. Annu Rev Pharmacol Toxicol 2004; 44: 451–474.

    Article  CAS  Google Scholar 

  15. Sathyanarayana P, Barthwal MK, Kundu CN, Lane ME, Bergmann A, Tzivion G et al. Activation of the Drosophila MLK by ceramide reveals TNF-alpha and ceramide as agonists of mammalian MLK3. Mol Cell 2002; 10: 1527–1533.

    Article  CAS  Google Scholar 

  16. Rana A, Gallo K, Godowski P, Hirai S, Ohno S, Zon L et al. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem 1996; 271: 19025–19028.

    Article  CAS  Google Scholar 

  17. Brancho D, Ventura JJ, Jaeschke A, Doran B, Flavell RA, Davis RJ . Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Mol Cell Biol 2005; 25: 3670–3681.

    Article  CAS  Google Scholar 

  18. Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR et al. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 1996; 15: 7026–7035.

    Article  CAS  Google Scholar 

  19. Kim KY, Kim BC, Xu Z, Kim SJ . Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem 2004; 279: 29478–29484.

    Article  CAS  Google Scholar 

  20. Vacratsis PO, Gallo KA . Zipper-mediated oligomerization of the mixed lineage kinase SPRK/MLK-3 is not required for its activation by the GTPase CDC 42 but is necessary for its activation of the JNK pathway. Monomeric SPRK L410P does not catalyze the activating phosphorylation of Thr258 of murine mitogen-activated protein kinase kinase 4. J Biol Chem 2000; 275: 27893–27900.

    CAS  Google Scholar 

  21. Xu Z, Maroney AC, Dobrzanski P, Kukekov NV, Greene LA . The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol Cell Biol 2001; 21: 4713–4724.

    Article  CAS  Google Scholar 

  22. Mota M, Reeder M, Chernoff J, Bazenet CE . Evidence for a role of mixed lineage kinases in neuronal apoptosis. J Neurosci 2001; 21: 4949–4957.

    Article  CAS  Google Scholar 

  23. Rangasamy V, Mishra R, Mehrotra S, Sondarva G, Ray RS, Rao A et al. Estrogen suppresses MLK3-mediated apoptosis sensitivity in ER+ breast cancer cells. Cancer Res 2010; 70: 1731–1740.

    Article  CAS  Google Scholar 

  24. Saporito MS, Brown EM, Miller MS, Carswell S . CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J Pharmacol Exp Ther 1999; 288: 421–427.

    CAS  PubMed  Google Scholar 

  25. Mishra R, Barthwal MK, Sondarva G, Rana B, Wong L, Chatterjee M et al. Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J Biol Chem 2007; 282: 30393–30405.

    Article  CAS  Google Scholar 

  26. Kang YJ, Kim SO, Shimada S, Otsuka M, Seit-Nebi A, Kwon BS et al. Cell surface 4-1BBL mediates sequential signaling pathways ‘downstream’ of TLR and is required for sustained TNF production in macrophages. Nat Immunol 2007; 8: 601–609.

    Article  CAS  Google Scholar 

  27. Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ . Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem 1996; 271: 2886–2891.

    Article  CAS  Google Scholar 

  28. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ . Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997; 386: 296–299.

    Article  CAS  Google Scholar 

  29. Teramoto H, Coso OA, Miyata H, Igishi T, Miki T, Gutkind JS . Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 1996; 271: 27225–27228.

    Article  CAS  Google Scholar 

  30. Bock BC, Vacratsis PO, Qamirani E, Gallo KA . Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo. Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation. J Biol Chem 2000; 275: 14231–14241.

    Article  CAS  Google Scholar 

  31. Burbelo PD, Drechsel D, Hall A . A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem 1995; 270: 29071–29074.

    Article  CAS  Google Scholar 

  32. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13: 1015–1024.

    Article  CAS  Google Scholar 

  33. Deng L, Wang C, Spencer E, Yang L, Braun A, You J et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361.

    Article  CAS  Google Scholar 

  34. Nagata K, Puls A, Futter C, Aspenstrom P, Schaefer E, Nakata T et al. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. Embo J 1998; 17: 149–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NSF China (30830092, 30921005, 91029304 and 81061160512), 973 Program (2009CB522200) and National Institutes of Health (AI41637 and AI68896).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seit-Nebi, A., Cheng, W., Xu, H. et al. MLK4 has negative effect on TLR4 signaling. Cell Mol Immunol 9, 27–33 (2012). https://doi.org/10.1038/cmi.2011.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.15

Keywords

This article is cited by

Search

Quick links