Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Pleural fluid from tuberculous pleurisy inhibits the functions of T cells and the differentiation of Th1 cells via immunosuppressive factors

Abstract

Immunosuppressive mediators in tuberculosis pleurisy (pleural fluid (PF)) are associated with the course of disease, but they remain poorly defined. To study the local immune status of patients with tuberculosis pleurisy, we examined the effect of PF on the functions of T cells and the differentiation of Th1 cells. PF could inhibit the ability of T cells to produce cytokines. However, tumor-necrosis factor (TNF)-α derived from non-T cells was not impaired. Further analysis indicated that cell activation and cell cycle progression were also suppressed. Moreover, PF could inhibit Th1 cell differentiation. Importantly, we found that inhibitors of indoleamine 2,3-dioxygenase (IDO) and adenosine and neutralizing antibodies against IL-10 and transforming growth factor (TGF)-β could reverse cytokine production, suggesting that IDO, adenosine, IL-10 and Transforming growth factor–β1 in PF might take part in impairing T-cell functions. Taken together, our data demonstrate for the first time that several immunopathological factors participate in the downregulation of T-cell functions in local PF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ferrer J . Pleural tuberculosis. Eur Respir J 1997; 10: 942–947.

    CAS  PubMed  Google Scholar 

  2. Porcel JM . Tuberculous pleural effusion. Lung 2009; 187: 263–270.

    Article  PubMed  Google Scholar 

  3. Light RW, Macgregor MI, Luchsinger PC, Ball WJ . Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 1972; 77: 507–513.

    Article  CAS  PubMed  Google Scholar 

  4. Aleman M, de la Barrera SS, Schierloh PL, Alves L, Yokobori N, Baldini M et al. In tuberculous pleural effusions, activated neutrophils undergo apoptosis and acquire a dendritic cell-like phenotype. J Infect Dis 2005; 192: 399–409.

    Article  CAS  PubMed  Google Scholar 

  5. Saka H, Shimokata K . State of the art: treatment of malignant pleural and pericardial effusions. Gan To Kagaku Ryoho 1997; 24( Suppl 3): 418–425. Japanese.

    PubMed  Google Scholar 

  6. Schwander SK, Torres M, Carranza CC, Escobedo D, Tary-Lehmann M, Anderson P et al. Pulmonary mononuclear cell responses to antigens of Mycobacterium tuberculosis in healthy household contacts of patients with active tuberculosis and healthy controls from the community. J Immunol 2000; 165: 1479–1485.

    Article  CAS  PubMed  Google Scholar 

  7. Bonecini-Almeida MG, Ho JL, Boechat N, Huard RC, Chitale S, Doo H et al. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infect Immun 2004; 72: 2628–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mellor A . Indoleamine 2,3 dioxygenase and regulation of T cell immunity. Biochem Biophys Res Commun 2005; 338: 20–24.

    Article  CAS  PubMed  Google Scholar 

  9. Zeller JC, Panoskaltsis-Mortari A, Murphy WJ, Ruscetti FW, Narula S, Roncarolo MG et al. Induction of CD4+ T cell alloantigen-specific hyporesponsiveness by IL-10 and TGF-beta. J Immunol 1999; 163: 3684–3691.

    CAS  PubMed  Google Scholar 

  10. Stone TW, Darlington LG . Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002; 1: 609–620.

    Article  CAS  PubMed  Google Scholar 

  11. Sitkovsky MV . Use of the A2A adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol 2003; 65: 493–501.

    Article  CAS  PubMed  Google Scholar 

  12. Driver AG, Kukoly CA, Ali S, Mustafa SJ . Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 1993; 148: 91–97.

    Article  CAS  PubMed  Google Scholar 

  13. Huszar E, Vass G, Vizi E, Csoma Z, Barat E, Molnar VG et al. Adenosine in exhaled breath condensate in healthy volunteers and in patients with asthma. Eur Respir J 2002; 20: 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  14. Huszar E, Horvath I, Barat E, Herjavecz I, Boszormenyi-Nagy G, Kollai M . Elevated circulating adenosine level potentiates antigen-induced immediate bronchospasm and bronchoconstrictor mediator release in sensitized guinea pigs. J Allergy Clin Immunol 1998; 102: 687–691.

    Article  CAS  PubMed  Google Scholar 

  15. Jalapathy KV, Prabha C, Das SD . Correlates of protective immune response in tuberculous pleuritis. FEMS Immunol Med Microbiol 2004; 40: 139–145.

    Article  CAS  PubMed  Google Scholar 

  16. Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL . Cytokine production at the site of disease in human tuberculosis. Infect Immun 1993; 61: 3482–3489.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Condos R, Rom WN, Liu YM, Schluger NW . Local immune responses correlate with presentation and outcome in tuberculosis. Am J Respir Crit Care Med 1998; 157: 729–735.

    Article  CAS  PubMed  Google Scholar 

  18. Hernandez-Pando R, Orozco H, Aguilar D . Factors that deregulate the protective immune response in tuberculosis. Arch Immunol Ther Exp (Warsz) 2009; 57: 355–367.

    Article  CAS  Google Scholar 

  19. Ho JL, Lapa ES . Promotion of a down-modulated lung immune state may be a strategy by M. tuberculosis to foster active disease and persistence. Discov Med 2010; 9: 34–41.

    PubMed  Google Scholar 

  20. Zhu J, Yamane H, Paul WE . Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010; 28: 445–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins HL, Kaufmann SH . The many faces of host responses to tuberculosis. Immunology 2001; 103: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahiratmadja E, Alisjahbana B, de Boer T, Adnan I, Maya A, Danusantoso H et al. Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect Immun 2007; 75: 820–829.

    Article  CAS  PubMed  Google Scholar 

  23. Taha RA, Kotsimbos TC, Song YL, Menzies D, Hamid Q . IFN-gamma and IL-12 are increased in active compared with inactive tuberculosis. Am J Respir Crit Care Med 1997; 155: 1135–1139.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor MW, Feng GS . Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 1991; 5: 2516–2522.

    Article  CAS  PubMed  Google Scholar 

  25. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA . Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000; 164: 3596–3599.

    Article  CAS  PubMed  Google Scholar 

  26. Mellor AL, Munn DH . IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4: 762–774.

    Article  CAS  PubMed  Google Scholar 

  27. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 2004; 22: 657–682.

    Article  CAS  PubMed  Google Scholar 

  28. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 2008; 111: 251–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cushley MJ, Tattersfield AE, Holgate ST . Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. 1983. Br J Clin Pharmacol 2004; 58: S751–S758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montesinos MC, Yap JS, Desai A, Posadas I, McCrary CT, Cronstein BN . Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum 2000; 43: 656–663.

    Article  CAS  PubMed  Google Scholar 

  31. Law WR . Adenosine receptors in the response to sepsis: what do receptor-specific knockouts tell us? Am J Physiol Regul Integr Comp Physiol 2006; 291: R957–R958.

    Article  CAS  PubMed  Google Scholar 

  32. Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA et al. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 2005; 129: 26–33.

    Article  CAS  Google Scholar 

  33. Victor-Vega C, Desai A, Montesinos MC, Cronstein BN . Adenosine A2A receptor agonists promote more rapid wound healing than recombinant human platelet-derived growth factor (Becaplermin gel). Inflammation 2002; 26: 19–24.

    Article  CAS  PubMed  Google Scholar 

  34. Huang S, Apasov S, Koshiba M, Sitkovsky M . Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 1997; 90: 1600–1610.

    CAS  PubMed  Google Scholar 

  35. Lappas CM, Rieger JM, Linden J . A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 2005; 174: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  36. de Waal MR, Haanen J, Spits H, Roncarolo MG, Te VA, Figdor C et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 1991; 174: 915–924.

    Article  Google Scholar 

  37. Almeida AS, Lago PM, Boechat N, Huard RC, Lazzarini LC, Santos AR et al. Tuberculosis is associated with a down-modulatory lung immune response that impairs Th1-type immunity. J Immunol 2009; 183: 718–731.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the 115 grant (no. 2008ZX10003011), the National Nature Science Foundation of China (no. 30872300) and the National Key Basic Research Program of China (973; no. 2007CB512404).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Li, L., Liu, Y. et al. Pleural fluid from tuberculous pleurisy inhibits the functions of T cells and the differentiation of Th1 cells via immunosuppressive factors. Cell Mol Immunol 8, 172–180 (2011). https://doi.org/10.1038/cmi.2010.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.80

Keywords

This article is cited by

Search

Quick links