Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Do viral infections protect from or enhance type 1 diabetes and how can we tell the difference?

Abstract

Virus infections have been implicated in both initiation of and protection from autoimmune diseases, such as type 1 diabetes (T1D). In this review we intend to reflect on recent evidence how viruses might on the one hand be involved in the pathogenesis of T1D and on the other hand induce a state of protection from autoimmune-mediated damage. It is important to acknowledge that human individuals encounter more than just one virus infection in their lifetime. Therefore, it is important to integrate more than just one possible environmental triggering factor for autoimmune diseases to occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Todd JA . Etiology of type 1 diabetes. Immunity 2010; 32: 457–467.

    Article  CAS  PubMed  Google Scholar 

  2. Ziegler AG, Nepom GT . Prediction and pathogenesis in type 1 diabetes. Immunity 2010; 32: 468–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Redondo MJ, Rewers M, Yu L, Garg S, Pilcher CC, Elliott RB et al. Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 1999; 318: 698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonifacio E, Hummel M, Walter M, Schmid S, Ziegler AG . IDDM1 and multiple family history of type 1 diabetes combine to identify neonates at high risk for type 1 diabetes. Diabetes Care 2004; 27: 2695–700.

    Article  PubMed  Google Scholar 

  5. Christen U, Benke D, Wolfe T, Rodrigo E, Rhode A, Hughes AC et al. Cure of prediabetic mice by viral infections involves lymphocyte recruitment along an IP-10 gradient. J Clin Invest 2004; 113: 74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Filippi CM, Estes EA, Oldham JE, von Herrath MG . Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 2009; 119: 1515–1523.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ehlers S, Kaufmann SH . 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: lifestyle changes affecting the host-environment interface. Clin Exp Immunol 2010; 160: 10–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Filippi CM, von Herrath MG . 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: viruses, autoimmunity and immunoregulation. Clin Exp Immunol 2010; 160: 113–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chatenoud L, You S, Okada H, Kuhn C, Michaud B, Bach JF . 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: immune therapies of type 1 diabetes: new opportunities based on the hygiene hypothesis. Clin Exp Immunol 2010; 160: 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW . Viral antibodies in diabetes mellitus. Br Med J 1969; 3: 627–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al-Hello H, Paananen A, Eskelinen M, Ylipaasto P, Hovi T, Salmela K et al. An enterovirus strain isolated from diabetic child belongs to a genetic subcluster of echovirus 11, but is also neutralised with monotypic antisera to coxsackievirus A9. J Gen Virol 2008; 89: 1949–1959.

    Article  CAS  PubMed  Google Scholar 

  12. Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 2007; 104: 5115–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoon JW, Austin M, Onodera T, Notkins AL . Virus-induced diabetes mellitus: isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979; 300: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  14. Honeyman MC, Coulson BS, Stone NL, Gellert SA, Goldwater PN, Steele CE et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 2000; 49: 1319–1324.

    Article  CAS  PubMed  Google Scholar 

  15. Hyoty H, Leinikki P, Reunanen A, Ilonen J, Surcel HM, Rilva A et al. Mumps infections in the etiology of type 1 (insulin-dependent) diabetes. Diabetes Res 1988; 9: 111–116.

    CAS  PubMed  Google Scholar 

  16. Gale EA . Congenital rubella: citation virus or viral cause of type 1 diabetes? Diabetologia 2008; 51: 1559–1566.

    Article  CAS  PubMed  Google Scholar 

  17. Pak CY, Eun HM, McArthur RG, Yoon JW . Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet 1988; 2: 1–4.

    Article  CAS  PubMed  Google Scholar 

  18. Jenson AB, Rosenberg HS, Notkins AL . Pancreatic islet-cell damage in children with fatal viral infections. Lancet 1980; 2: 354–358.

    CAS  PubMed  Google Scholar 

  19. Tracy S, Drescher KM, Jackson JD, Kim K, Kono K . Enteroviruses, type 1 diabetes and hygiene: a complex relationship. Rev Med Virol 2010; 20: 106–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andreoletti L, Hober D, Hober-Vandenberghe C, Belaich S, Vantyghem MC, Lefebvre J et al. Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol 1997; 52: 121–127.

    Article  CAS  PubMed  Google Scholar 

  21. Schulte BM, Bakkers J, Lanke KH, Melchers WJ, Westerlaken C, Allebes W et al. Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection. Viral Immunol 2010; 23: 99–104.

    Article  CAS  PubMed  Google Scholar 

  22. Clements GB, Galbraith DN, Taylor KW . Coxsackie B virus infection and onset of childhood diabetes. Lancet 1995; 346: 221–223.

    Article  CAS  PubMed  Google Scholar 

  23. Lonnrot M, Salminen K, Knip M, Savola K, Kulmala P, Leinikki P et al. Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study. Childhood Diabetes in Finland (DiMe) Study Group. J Med Virol 2000; 61: 214–220.

    Article  CAS  PubMed  Google Scholar 

  24. Stene LC, Oikarinen S, Hyöty H, Barriga KJ, Norris JM, Klingensmith G et al. Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: The Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes 2010; 59: 3174–3180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoon JW, Austin M, Onodera T, Notkins AL . Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979; 300: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  26. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG . The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 2009; 52: 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  27. Richardson SJ, Willcox A, Hilton DA, Tauriainen S, Hyoty H, Bone AJ et al. Use of antisera directed against dsRNA to detect viral infections in formalin-fixed paraffin-embedded tissue. J Clin Virol 2010; 49: 180–185.

    Article  CAS  PubMed  Google Scholar 

  28. Chatterjee NK, Nejman C, Gerling I . Purification and characterization of a strain of coxsackievirus B4 of human origin that induces diabetes in mice. J Med Virol 1988; 26: 57–69.

    Article  CAS  PubMed  Google Scholar 

  29. Elshebani A, Olsson A, Westman J, Tuvemo T, Korsgren O, Frisk G . Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes. Virus Res 2007; 124: 193–203.

    Article  CAS  PubMed  Google Scholar 

  30. Bach JF . The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347: 911–920.

    Article  PubMed  Google Scholar 

  31. Dunne DW, Cooke A . A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol 2005; 5: 420–426.

    Article  CAS  PubMed  Google Scholar 

  32. Schubert C . News feature: the worm has turned. Nat Med 2004; 10: 1271–1272.

    Article  CAS  PubMed  Google Scholar 

  33. Kurtzke JF . Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 1993; 6: 382–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujinami RS, von Herrath MG, Christen U, Whitton JL . Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 2006; 19: 80–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaccone P, Fehervari Z, Phillips JM, Dunne DW, Cooke A . Parasitic worms and inflammatory diseases. Parasite Immunol 2006; 28: 515–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Viskari H, Ludvigsson J, Uibo R, Salur L, Marciulionyte D, Hermann R et al. Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia 2005; 48: 1280–1287.

    Article  CAS  PubMed  Google Scholar 

  37. Viskari H, Ludvigsson J, Uibo R, Salur L, Marciulionyte D, Hermann R et al. Relationship between the incidence of type 1 diabetes and enterovirus infections in different European populations: results from the EPIVIR project. J Med Virol 2004; 72: 610–617.

    Article  PubMed  Google Scholar 

  38. Seiskari T, Kondrashova A, Viskari H, Kaila M, Haapala AM, Aittoniemi J et al. Allergic sensitization and microbial load—a comparison between Finland and Russian Karelia. Clin Exp Immunol 2007; 148: 47–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bodansky HJ, Staines A, Stephenson C, Haigh D, Cartwright R . Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. BMJ 1992; 304: 1020–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cantorna MT, Mahon BD . Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med (Maywood) 2004; 229: 1136–1142.

    Article  CAS  Google Scholar 

  41. Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini L . A 1alpha,25-dihydroxyvitamin D3 analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes 2002; 51: 1367–1374.

    Article  CAS  PubMed  Google Scholar 

  42. Decallonne B, van Etten E, Overbergh L, Valckx D, Bouillon R, Mathieu C . 1Alpha,25-dihydroxyvitamin D3 restores thymocyte apoptosis sensitivity in non-obese diabetic (NOD) mice through dendritic cells. J Autoimmun 2005; 24: 281–289.

    Article  CAS  PubMed  Google Scholar 

  43. Fisman DN . Seasonality of infectious diseases. Annu Rev Public Health 2007; 28: 127–143.

    Article  PubMed  Google Scholar 

  44. Christen U, Hintermann E, Holdener M, von Herrath MG . Viral triggers for autoimmunity: is the ‘glass of molecular mimicry’ half full or half empty? J Autoimmun 2010; 34: 38–44.

    Article  CAS  PubMed  Google Scholar 

  45. Christen U, von Herrath MG . Induction, acceleration or prevention of autoimmunity by molecular mimicry. Mol Immunol 2004; 40: 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  46. Damian RT . Molecular mimicry: antigen sharing by parasite and host and its consequences. Am Nat 1964; 98: 129–149.

    Article  Google Scholar 

  47. Oldstone MB . Molecular mimicry as a mechanism for the cause and as a probe uncovering etiologic agent(s) of autoimmune disease. Curr Top Microbiol Immunol 1989; 145: 127–136.

    CAS  PubMed  Google Scholar 

  48. von Herrath MG, Fujinami RS, Whitton JL . Microorganisms and autoimmunity: making the barren field fertile. Nat Rev Microbiol 2003; 1: 151–157.

    Article  CAS  PubMed  Google Scholar 

  49. Rhode A, Pauza ME, Barral AM, Rodrigo E, Oldstone MB, von Herrath MG et al. Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol 2005; 175: 3516–3524.

    Article  CAS  PubMed  Google Scholar 

  50. Eizirik DL, Colli ML, Ortis F . The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5: 219–226.

    Article  CAS  PubMed  Google Scholar 

  51. D'Alise AM, Auyeung V, Feuerer M, Nishio J, Fontenot J, Benoist C et al. The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors. Proc Natl Acad Sci USA 2008; 105: 19857–19862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Freimuth P, Philipson L, Carson SD . The coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol 2008; 323: 67–87.

    CAS  PubMed  Google Scholar 

  53. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N . Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998; 4: 781–785.

    Article  CAS  PubMed  Google Scholar 

  54. Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N . Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 2004; 110: 134–144.

    Article  CAS  PubMed  Google Scholar 

  55. Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA . Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 2000; 49: 708–711.

    Article  CAS  PubMed  Google Scholar 

  56. Coleman TJ, Gamble DR, Taylor KW . Diabetes in mice after Coxsackie B4 virus infection. Br Med J 1973; 3: 25–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tracy S, Drescher KM, Chapman NM, Kim KS, Carson SD, Pirruccello S et al. Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 2002; 76: 12097–12111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kanno T, Kim K, Kono K, Drescher KM, Chapman NM, Tracy S . Group B coxsackievirus diabetogenic phenotype correlates with replication efficiency. J Virol 2006; 80: 5637–5643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schulte BM, Kramer M, Ansems M, Lanke KH, van Doremalen N, Piganelli JD et al. Phagocytosis of enterovirus-infected pancreatic beta-cells triggers innate immune responses in human dendritic cells. Diabetes 2010; 59: 1182–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H . Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response. Cell 1991; 65: 319–331.

    Article  CAS  PubMed  Google Scholar 

  61. von Herrath MG, Dockter J, Oldstone MB . How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1994; 1: 231–242.

    Article  CAS  PubMed  Google Scholar 

  62. Oldstone MB . Prevention of type I diabetes in nonobese diabetic mice by virus infection. Science 1988; 239: 500–502.

    Article  CAS  PubMed  Google Scholar 

  63. Christen U, von Herrath MG . Infections and autoimmunity—good or bad? J Immunol 2005; 174: 7481–7486.

    Article  CAS  PubMed  Google Scholar 

  64. Selin LK, Welsh RM . Plasticity of T cell memory responses to viruses. Immunity 2004; 20: 5–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Christen U, Edelmann KH, McGavern DB, Wolfe T, Coon B, Teague MK et al. A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 2004; 114: 1290–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Homepage TEDDY Study. Available from: http://teddy.epi.usf.edu/

Download references

Acknowledgements

UC is supported by grants of the German Research Foundation. MGvH is supported by a scholar award of the Juvenile Diabetes Research Foundation and a Program Project Grant of the National Institute of Health to the La Jolla Institute for Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Christen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christen, U., von Herrath, M. Do viral infections protect from or enhance type 1 diabetes and how can we tell the difference?. Cell Mol Immunol 8, 193–198 (2011). https://doi.org/10.1038/cmi.2010.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.71

Keywords

This article is cited by

Search

Quick links