Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Regeneration of dendritic cells in aged mice

Abstract

Age-related thymic involution causes a decreased output of thymocytes from the thymus, thereby resulting in impairment of T cell-mediated immunity. While alterations in the T cell and non-haematopoietic stromal compartments have been described, the effects of thymic involution on thymic dendritic cells (DC) are not clearly known. Thymic DC play an essential role in shaping T cell-mediated immune responses by deleting self-reactive thymocytes to establish central tolerance and by inducing regulatory T-cell (Treg) development. It is therefore important to assess the prevalence of and alterations to thymic DC with age, as this may impact on their function. We assessed the numbers and proportions of the three distinct subsets of thymic DC in ageing mice, and showed that these subsets are differentially regulated. This is expected as thymic DC subsets have different origins of development. We further assessed the responses of thymic DC in a regenerative environment, such as that induced by sex-steroid ablation (SSA), and clearly showed that, consistent with global thymus regrowth, all three DC populations increased in numbers and regained their relative proportions to thymocytes after an initial lag period. These findings are important for the clinical translation of thymic regenerative approaches, and indicate that SSA facilitates the maintenance of critical processes such as negative selection and Treg induction through promoting thymic DC regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL . Effects of castration on thymocyte development in two different models of thymic involution. J Immunol 2005; 175: 2982–2993.

    Article  CAS  PubMed  Google Scholar 

  2. Gruver AL, Hudson LL, Sempowski GD . Immunosenescence of ageing. J Pathol 2007; 211: 144–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nabarra B, Andrianarison I . Ultrastructural study of thymic microenvironment involution in aging mice. Exp Gerontol 1996; 31: 489–506.

    Article  CAS  PubMed  Google Scholar 

  4. Marchetti B, Guarcello V, Morale MC, Bartoloni G, Raiti F, Palumbo G Jr et al. Luteinizing hormone-releasing hormone (LHRH) agonist restoration of age-associated decline of thymus weight, thymic LHRH receptors, and thymocyte proliferative capacity. Endocrinology 1989; 125: 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  5. Greenstein BD, Fitzpatrick FT, Adcock IM, Kendall MD, Wheeler MJ . Reappearance of the thymus in old rats after orchidectomy: inhibition of regeneration by testosterone. J Endocrinol 1986; 110: 417–422.

    Article  CAS  PubMed  Google Scholar 

  6. Windmill KF, Meade BJ, Lee VW . Effect of prepubertal gonadectomy and sex steroid treatment on the growth and lymphocyte populations of the rat thymus. Reprod Fertil Dev 1993; 5: 73–81.

    Article  CAS  PubMed  Google Scholar 

  7. Fitzpatrick FT, Kendall MD, Wheeler MJ, Adcock IM, Greenstein BD . Reappearance of thymus of ageing rats after orchidectomy. J Endocrinol 1985; 106: R17–R19.

    Article  CAS  PubMed  Google Scholar 

  8. Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS et al. Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 2005; 175: 2741–2753.

    Article  CAS  PubMed  Google Scholar 

  9. Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 2006; 108: 3777–3785.

    Article  CAS  PubMed  Google Scholar 

  10. Steffens CM, Al-Harthi L, Shott S, Yogev R, Landay A . Evaluation of thymopoiesis using T cell receptor excision circles (TRECs): differential correlation between adult and pediatric TRECs and naive phenotypes. Clin Immunol 2000; 97: 95–101.

    Article  CAS  PubMed  Google Scholar 

  11. Sempowski GD, Gooding ME, Liao HX, Le PT, Haynes BF . T cell receptor excision circle assessment of thymopoiesis in aging mice. Mol Immunol 2002; 38: 841–848.

    Article  CAS  PubMed  Google Scholar 

  12. Berzins SP, Uldrich AP, Sutherland JS, Gill J, Miller JF, Godfrey DI et al. Thymic regeneration: teaching an old immune system new tricks. Trends Mol Med 2002; 8: 469–476.

    Article  CAS  PubMed  Google Scholar 

  13. Mosley RL, Koker MM, Miller RA . Idiosyncratic alterations of TCR size distributions affecting both CD4 and CD8 T cell subsets in aging mice. Cell Immunol 1998; 189: 10–18.

    Article  CAS  PubMed  Google Scholar 

  14. LeMaoult J, Messaoudi I, Manavalan JS, Potvin H, Nikolich-Zugich D, Dyall R et al. Age-related dysregulation in CD8 T cell homeostasis: kinetics of a diversity loss. J Immunol 2000; 165: 2367–2373.

    Article  CAS  PubMed  Google Scholar 

  15. Ernst DN, Hobbs MV, Torbett BE, Glasebrook AL, Rehse MA, Bottomly K et al. Differences in the expression profiles of CD45RB, Pgp-1, and 3G11 membrane antigens and in the patterns of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J Immunol 1990; 145: 1295–1302.

    CAS  PubMed  Google Scholar 

  16. Kurashima C, Utsuyama M, Kasai M, Ishijima SA, Konno A, Hirokawa K . The role of thymus in the aging of Th cell subpopulations and age-associated alteration of cytokine production by these cells. Int Immunol 1995; 7: 97–104.

    Article  CAS  PubMed  Google Scholar 

  17. Utsuyama M, Hirokawa K, Kurashima C, Fukayama M, Inamatsu T, Suzuki K et al. Differential age-change in the numbers of CD4+CD45RA+ and CD4+CD29+ T cell subsets in human peripheral blood. Mech Ageing Dev 1992; 63: 57–68.

    Article  CAS  PubMed  Google Scholar 

  18. Mackall CL, Hakim FT, Gress RE . Restoration of T-cell homeostasis after T-cell depletion. Semin Immunol 1997; 9: 339–346.

    Article  CAS  PubMed  Google Scholar 

  19. Chidgey AP, Seach N, Dudakov J, Hammett M, Boyd RL . Strategies for reconstituting and boosting T cell-based immunity following haemotopoietic stem cell transplantation: pre-clinical and clinical approaches. Semin Immunopathol 2008; 30: 457–477.

    Article  PubMed  Google Scholar 

  20. Hince M, Sakkal S, Vlahos K, Dudakov J, Boyd R, Chidgey A . The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol 2008; 252: 122–138.

    Article  CAS  PubMed  Google Scholar 

  21. Utsuyama M, Hirokawa K . Hypertrophy of the thymus and restoration of immune functions in mice and rats by gonadectomy. Mech Ageing Dev 1989; 47: 175–185.

    Article  CAS  PubMed  Google Scholar 

  22. Wei XY, Zhang JK, Li J, Chen SB . Effect of bilateral testicular resection on thymocyte and its microenvironment in aged mice. Asian J Androl 2001; 3: 271–275.

    CAS  PubMed  Google Scholar 

  23. Goldberg GL, Alpdogan O, Muriglan SJ, Hammett MV, Milton MK, Eng JM et al. Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J Immunol 2007; 178: 7473–7484.

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg GL, Sutherland JS, Hammet MV, Milton MK, Heng TS, Chidgey AP et al. Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 2005; 80: 1604–1613.

    Article  PubMed  Google Scholar 

  25. Olsen NJ, Viselli SM, Shults K, Stelzer G, Kovacs WJ . Induction of immature thymocyte proliferation after castration of normal male mice. Endocrinology 1994; 134: 107–113.

    Article  CAS  PubMed  Google Scholar 

  26. Olsen NJ, Kovacs WJ . Gonadal steroids and immunity. Endocr Rev 1996; 17: 369–384.

    CAS  PubMed  Google Scholar 

  27. Gallegos AM, Bevan MJ . Central tolerance: good but imperfect. Immunol Rev 2006; 209: 290–296.

    Article  PubMed  Google Scholar 

  28. Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ et al. Dendritic cells in the thymus contribute to T regulatory cell induction. Proc Natl Acad Sci USA 2008; 105: 19869–19874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu L, Shortman K . Heterogeneity of thymic dendritic cells. Semin Immunol 2005; 17: 304–312.

    Article  CAS  PubMed  Google Scholar 

  30. Vremec D, Pooley J, Hochrein H, Wu L, Shortman K . CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 2000; 164: 2978–2986.

    Article  CAS  PubMed  Google Scholar 

  31. Lahoud MH, Proietto AI, Gartlan KH, Kitsoulis S, Curtis J, Wettenhall J et al. Signal regulatory protein molecules are differentially expressed by CD8-dendritic cells. J Immunol 2006; 177: 372–382.

    Article  CAS  PubMed  Google Scholar 

  32. Wu L, Vremec D, Ardavin C, Winkel K, Suss G, Georgiou H et al. Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation. Eur J Immunol 1995; 25: 418–425.

    Article  CAS  PubMed  Google Scholar 

  33. Donskoy E, Foss D, Goldschneider I . Gated importation of prothymocytes by adult mouse thymus is coordinated with their periodic mobilization from bone marrow. J Immunol 2003; 171: 3568–3575.

    Article  CAS  PubMed  Google Scholar 

  34. Brocker T . The role of dendritic cells in T cell selection and survival. J Leukoc Biol 1999; 66: 331–335.

    Article  CAS  PubMed  Google Scholar 

  35. Anderson G, Partington KM, Jenkinson EJ . Differential effects of peptide diversity and stromal cell type in positive and negative selection in the thymus. J Immunol 1998; 161: 6599–6603.

    CAS  PubMed  Google Scholar 

  36. Brocker T, Riedinger M, Karjalainen K . Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 1997; 185: 541–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taniguchi H, Abe M, Shirai T, Fukao K, Nakauchi H . Reconstitution ratio is critical for alloreactive T cell deletion and skin graft survival in mixed bone marrow chimeras. J Immunol 1995; 155: 5631–5636.

    CAS  PubMed  Google Scholar 

  38. Gallegos AM, Bevan MJ . Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 2004; 200: 1039–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH . Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 2006; 7: 1092–1100.

    Article  CAS  PubMed  Google Scholar 

  40. Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF, Wu L et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 1992; 176: 47–58.

    Article  CAS  PubMed  Google Scholar 

  41. Vremec D, Shortman K . Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J Immunol 1997; 159: 565–573.

    CAS  PubMed  Google Scholar 

  42. Kumanogoh A, Wang X, Lee I, Watanabe C, Kamanaka M, Shi W et al. Increased T cell autoreactivity in the absence of CD40–CD40 ligand interactions: a role of CD40 in regulatory T cell development. J Immunol 2001; 166: 353–360.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S et al. Distinct roles for the OX40–OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 2004; 172: 3580–3589.

    Article  CAS  PubMed  Google Scholar 

  45. Tang Q, Henriksen KJ, Boden EK, Tooley AJ, Ye J, Subudhi SK et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 2003; 171: 3348–3352.

    Article  CAS  PubMed  Google Scholar 

  46. Utsuyama M, Hirokawa K, Mancini C, Brunelli R, Leter G, Doria G . Differential effects of gonadectomy on thymic stromal cells in promoting T cell differentiation in mice. Mech Ageing Dev 1995; 81: 107–117.

    Article  CAS  PubMed  Google Scholar 

  47. Ellis TM, Moser MT, Le PT, Flanigan RC, Kwon ED . Alterations in peripheral B cells and B cell progenitors following androgen ablation in mice. Int Immunol 2001; 13: 553–558.

    Article  CAS  PubMed  Google Scholar 

  48. Nakahama M, Mohri N, Mori S, Shindo G, Yokoi Y, Machinami R . Immunohistochemical and histometrical studies of the human thymus with special emphasis on age-related changes in medullary epithelial and dendritic cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1990; 58: 245–251.

    Article  CAS  PubMed  Google Scholar 

  49. Varas A, Sacedon R, Hernandez-Lopez C, Jimenez E, Garcia-Ceca J, Arias-Diaz J et al. Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech 2003; 62: 501–507.

    Article  CAS  PubMed  Google Scholar 

  50. Wu L . T lineage progenitors: the earliest steps en route to T lymphocytes. Curr Opin Immunol 2006; 18: 121–126.

    Article  CAS  PubMed  Google Scholar 

  51. Benz C, Bleul CC . A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J Exp Med 2005; 202: 21–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen HQ, Lu M, Ikawa T, Masuda K, Ohmura K, Minato N et al. T/NK bipotent progenitors in the thymus retain the potential to generate dendritic cells. J Immunol 2003; 171: 3401–3406.

    Article  CAS  PubMed  Google Scholar 

  53. Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I, Mugishima H et al. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRbeta chains than fetal progenitors. J Immunol 2005; 175: 5848–5856.

    Article  CAS  PubMed  Google Scholar 

  54. Ardavin C, Wu L, Li CL, Shortman K . Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 1993; 362: 761–763.

    Article  CAS  PubMed  Google Scholar 

  55. Wu L, Li CL, Shortman K . Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 1996; 184: 903–911.

    Article  CAS  PubMed  Google Scholar 

  56. Min H, Montecino-Rodriguez E, Dorshkind K . Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol 2004; 173: 245–250.

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Park J, Foss D, Goldschneider I . Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J Exp Med 2009; 206: 607–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crisi GM, Tsiagbe VK, Russo C, Basch RS, Thorbecke GJ . Evaluation of presence and functional activity of potentially self-reactive T cells in aged mice. Int Immunol 1996; 8: 387–395.

    Article  CAS  PubMed  Google Scholar 

  59. Gonzalez-Quintial R, Baccala R, Balderas RS, Theofilopoulos AN . V beta gene repertoire in the aging mouse: a developmental perspective. Int Rev Immunol 1995; 12: 27–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Homann for performing the castration operations and animal husbandry. L. Wu, K. Shortman and S. van Dommelen are supported by a grant from the Australian Stem Cell Centre. L. Wu and K. Shortman are supported by fellowships and grants from the Australian National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dommelen, S., Rizzitelli, A., Chidgey, A. et al. Regeneration of dendritic cells in aged mice. Cell Mol Immunol 7, 108–115 (2010). https://doi.org/10.1038/cmi.2009.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2009.114

Keywords

This article is cited by

Search

Quick links