Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Host Disease

Low blood lymphocyte count at 30 days post transplant predicts worse acute GVHD and survival but not relapse in a large retrospective cohort

Abstract

Multiple reports have shown that low absolute lymphocyte count at day 30 (ALC30) after allogeneic hematopoietic SCT (AHSCT) is associated with higher risk of disease relapse and worse OS. However, these reports included heterogeneous populations with different grafts and GVHD prophylaxis. Therefore, we retrospectively evaluated the association of ALC30 with transplant outcomes in a cohort of 381 consecutive patients who underwent AHSCT between 2005 and 2010 and received T-replete PBSC grafts and Tacrolimus/Mycophenolate combination as GVHD prophylaxis. Median follow-up was 57 months. Lower ALC30 (400 × 106/L) was associated with lower OS and increased nonrelapse mortality (NRM) for the whole cohort as well as for recipients of SD and UD grafts separately. Lower ALC30 was associated with more severe acute GVHD (aGVHD; III–IV) for the entire cohort as well as for the SD and UD groups. No association was found between lower ALC30 and relapse. Pretransplant factors associated with lower ALC30 were: unrelated donors; HLA mismatch; older donors; lower recipient age; and lower CD34+ cell dose. In this large retrospective study, ALC30400 × 106/L was associated with worse OS, increased NRM and severe aGVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chalandon Y, Passweg JR, Schmid C, Olavarria E, Dazzi F, Simula MP et al. Outcome of patients developing GVHD after DLI given to treat CML relapse: a study by the Chronic Leukemia Working Party of the EBMT. Bone Marrow Transplant 2010; 45: 558–564.

    Article  CAS  PubMed  Google Scholar 

  2. Bar M, Sandmaier BM, Inamoto Y, Bruno B, Hari P, Chauncey T et al. Donor lymphocyte infusion for relapsed hematological malignancies after allogeneic hematopoietic cell transplantation: prognostic relevance of the initial CD3+ T cell dose. Biol Blood Marrow Transplant 2013; 19: 949–957.

    Article  PubMed  Google Scholar 

  3. Guillaume T, Gaugler B, Chevallier P, Delaunay J, Ayari S, Clavert A et al. Escalated lymphodepletion followed by donor lymphocyte infusion can induce a graft-versus-host response without overwhelming toxicity. Bone Marrow Transplant 2012; 47: 1112–1117.

    Article  CAS  PubMed  Google Scholar 

  4. Yun HD, Waller EK . Finding the sweet spot for donor lymphocyte infusions. Biol Blood Marrow Transplant 2013; 19: 507–508.

    Article  PubMed  Google Scholar 

  5. Liga M, Triantafyllou E, Tiniakou M, Lambropoulou P, Karakantza M, Zoumbos NC et al. High alloreactivity of low-dose prophylactic donor lymphocyte infusion in patients with acute leukemia undergoing allogeneic hematopoietic cell transplantation with an alemtuzumab-containing conditioning regimen. Biol Blood Marrow Transplant 2013; 19: 75–81.

    Article  CAS  PubMed  Google Scholar 

  6. Powles R, Singhal S, Treleaven J, Kulkarni S, Horton C, Mehta J . Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 1998; 91: 3481–3486.

    CAS  PubMed  Google Scholar 

  7. Kumar S, Chen MG, Gastineau DA, Gertz MA, Inwards DJ, Lacy MQ et al. Effect of slow lymphocyte recovery and type of graft-versus-host disease prophylaxis on relapse after allogeneic bone marrow transplantation for acute myelogenous leukemia. Blood Marrow Transplant 2001; 28: 951–956.

    Article  CAS  Google Scholar 

  8. Kumar S, Chen MG, Gastineau DA, Gertz MA, Inwards DJ, Lacy MQ et al. Lymphocyte recovery after allogeneic bone marrow transplantation predicts risk of relapse in acute lymphoblastic leukemia. Leukemia 2003; 17: 1865–1870.

    Article  CAS  PubMed  Google Scholar 

  9. Ishaqi MK, Afzal S, Dupuis A, Doyle J, Gassas A . Early lymphocyte recovery post-allogeneic hematopoietic stem cell transplantation is associated with significant graft-versus-leukemia effect without increase in graft-versus-host disease in pediatric acute lymphoblastic leukemia. Blood Marrow Transplant 2008; 41: 245–252.

    Article  CAS  Google Scholar 

  10. Savani BN, Mielke S, Rezvani K, Montero A, Yong AS, Wish L et al. Absolute lymphocyte count on day 30 is a surrogate for robust hematopoietic recovery and strongly predicts outcome after T cell-depleted allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2007; 13: 1216–1223.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Le Blanc K, Barrett AJ, Schaffer M, Hagglund H, Ljungman P, Ringden O et al. Lymphocyte recovery is a major determinant of outcome after matched unrelated myeloablative transplantation for myelogenous malignancies. Biol Blood Marrow Transplant 2009; 15: 1108–1115.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gul Z, Abdul-Hussein M, Ditah I, Uberti JP, Abidi MH, Ayash L et al. Comparison of clinical outcomes and day 30 lymphocyte recovery between two aGVHD prophylaxis regimens in matched unrelated hematopoietic stem cell transplant (MUD) patients. ASH Annual Meeting Abstracts 2010; 116: 2340-.

    Google Scholar 

  13. Al-Kadhimi Z, Gul Z, Van Meter E, Abidi MH, Deol A, Ayash LJ et al. Lower lymphocyte count at day 30 predicts worse overall survival with tacrolimus and mycophenophelate mofetil use for GVHD prophylaxis: a large retrospective analysis. Biol Blood Marrow Transplant 2013; 19: S198–S199.

    Article  Google Scholar 

  14. Al-Kadhimi Z, Gul Z, Chen W, Smith D, Abidi M, Deol A et al. High incidence of severe agvhd with tacrolimus and mycophenolate mofetil in a large cohort of related and unrelated allogeneic transplant patients. Biol Blood Marrow Transplant 2014; 20: 979–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Litzow MR, Tarima S, Perez WS, Bolwell BJ, Cairo MS, Camitta BM et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood 2010; 115: 1850–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kroger N, Brand R, van Biezen A, Zander A, Dierlamm J, Niederwieser D et al. Risk factors for therapy-related myelodysplastic syndrome and acute myeloid leukemia treated with allogeneic stem cell transplantation. Haematologica 2009; 94: 542–549.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gupta V, Tallman MS, Weisdorf DJ . Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: myths, controversies, and unknowns. Blood 2011; 117: 2307–2318.

    Article  CAS  PubMed  Google Scholar 

  18. Gyurkocza B, Storb R, Storer BE, Chauncey TR, Lange T, Shizuru JA et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 2859–2867.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Witherspoon RP, Deeg HJ . Allogeneic bone marrow transplantation for secondary leukemia or myelodysplasia. Haematologica 1999; 84: 1085–1087.

    CAS  PubMed  Google Scholar 

  20. Yakoub-Agha I, de La Salmoniere P, Ribaud P, Sutton L, Wattel E, Kuentz M et al. Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French society of bone marrow transplantation. J Clin Oncol 2000; 18: 963–971.

    Article  CAS  PubMed  Google Scholar 

  21. Ballen KK, Shrestha S, Sobocinski KA, Zhang MJ, Bashey A, Bolwell BJ et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 2010; 16: 358–367.

    Article  PubMed  Google Scholar 

  22. Kim SW, Tanimoto TE, Hirabayashi N, Goto S, Kami M, Yoshioka S et al. Myeloablative allogeneic hematopoietic stem cell transplantation for non-Hodgkin lymphoma: a nationwide survey in Japan. Blood 2006; 108: 382–389.

    Article  CAS  PubMed  Google Scholar 

  23. Delgado J, Milligan DW, Dreger P . Allogeneic hematopoietic cell transplantation for chronic lymphocytic leukemia: ready for prime time? Blood 2009; 114: 2581–2588.

    Article  CAS  PubMed  Google Scholar 

  24. Sorror ML, Storer BE, Sandmaier BM, Maris M, Shizuru J, Maziarz R et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol 2008; 26: 4912–4920.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vesey CJ, Sweeney B, Cole PV . Decay of nitroprusside. II: in vivo. British J Anaesth 1990; 64: 704–709.

    Article  CAS  Google Scholar 

  26. Barrio I, Arostegui I, Quintana JM, Group IC. Use of generalised additive models to categorise continuous variables in clinical prediction. BMC Med Res Methodol 2013; 13: 83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Williams BMJ, Mandrekar JS, Cha SS, Furth AF . Finding Optimal Cutpoints for Continuous Covariates with Binary and Time-to-event Outcomes. Mayo Clinic: Rochester, Minnesota, 2006.

    Google Scholar 

  28. Jiang YZ, Barrett AJ, Goldman JM, Mavroudis DA . Association of natural killer cell immune recovery with a graft-versus-leukemia effect independent of graft-versus-host disease following allogeneic bone marrow transplantation. Ann Hematol 1997; 74: 1–6.

    Article  CAS  PubMed  Google Scholar 

  29. Sconocchia G, del Principe D, Barrett AJ . Non-classical antileukemia activity of early recovering NK cells after induction chemotherapy and HLA-identical stem cell transplantation in myeloid leukemias. Leukemia 2006; 20: 1632–1633.

    Article  CAS  PubMed  Google Scholar 

  30. Niederwieser D, Gastl G, Rumpold H, Marth C, Kraft D, Huber C . Rapid reappearance of large granular lymphocytes (LGL) with concomitant reconstitution of natural killer (NK) activity after human bone marrow transplantation (BMT). Brit J Haematol 1987; 65: 301–305.

    Article  CAS  Google Scholar 

  31. Savani BN, Mielke S, Adams S, Uribe M, Rezvani K, Yong AS et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia 2007; 21: 2145–2152.

    Article  CAS  PubMed  Google Scholar 

  32. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  33. Taga T, Kariya Y, Shimada M, Uchida A . Suppression of natural killer cell activity by granulocytes in patients with aplastic anemia: role of granulocyte colony-stimulating factor. Immunol Lett 1993; 39: 65–70.

    Article  CAS  PubMed  Google Scholar 

  34. Dreger P, Suttorp M, Loffler H, Schmitz N . Influence of G-CSF on NK cell recovery after autologous BMT. Bone Marrow Transplant 1994; 13: 667–668.

    CAS  PubMed  Google Scholar 

  35. Miller JS, Prosper F, McCullar V . Natural killer (NK) cells are functionally abnormal and NK cell progenitors are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collections. Blood 1997; 90: 3098–3105.

    CAS  PubMed  Google Scholar 

  36. Tayebi H, Kuttler F, Saas P, Lienard A, Petracca B, Lapierre V et al. Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells. Exp Hematol 2001; 29: 458–470.

    Article  CAS  PubMed  Google Scholar 

  37. Morris ES, MacDonald KP, Hill GR . Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL? Blood 2006; 107: 3430–3435.

    Article  CAS  PubMed  Google Scholar 

  38. Schlahsa L, Jaimes Y, Blasczyk R, Figueiredo C . Granulocyte-colony-stimulatory factor: a strong inhibitor of natural killer cell function. Transfusion 2011; 51: 293–305.

    Article  CAS  PubMed  Google Scholar 

  39. Su YC, Li SC, Hsu CK, Yu CC, Lin TJ, Lee CY et al. G-CSF downregulates natural killer cell-mediated cytotoxicity in donors for hematopoietic SCT. Bone Marrow Transplant 2012; 47: 73–81.

    Article  CAS  PubMed  Google Scholar 

  40. Kim DH, Kim JG, Sohn SK, Sung WJ, Suh JS, Lee KS et al. Clinical impact of early absolute lymphocyte count after allogeneic stem cell transplantation. Brit J Haematol 2004; 125: 217–224.

    Article  Google Scholar 

  41. Heining C, Spyridonidis A, Bernhardt E, Schulte-Monting J, Behringer D, Grullich C et al. Lymphocyte reconstitution following allogeneic hematopoietic stem cell transplantation: a retrospective study including 148 patients. Bone Marrow Transplant 2007; 39: 613–622.

    Article  CAS  PubMed  Google Scholar 

  42. Baron F, Storer B, Maris MB, Storek J, Piette F, Metcalf M et al. Unrelated donor status and high donor age independently affect immunologic recovery after nonmyeloablative conditioning. Biol Blood Marrow Transplant 2006; 12: 1176–1187.

    Article  PubMed  Google Scholar 

  43. Fallen PR, McGreavey L, Madrigal JA, Potter M, Ethell M, Prentice HG et al. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients. Bone Marrow Transplant 2003; 32: 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  44. Azuma E, Hirayama M, Yamamoto H, Komada Y . The role of donor age in naive T-cell recovery following allogeneic hematopoietic stem cell transplantation: the younger the better. Leuk Lymphoma 2002; 43: 735–739.

    Article  PubMed  Google Scholar 

  45. Hirayama M, Azuma E, Jiang Q, Kobayashi M, Iwamoto S, Kumamoto T et al. The reconstitution of CD45RBhiCD4+ naive T cells is inversely correlated with donor age in murine allogeneic haematopoietic stem cell transplantation. Brit J Haematol 2000; 111: 700–707.

    Article  CAS  Google Scholar 

  46. Baron F, Maris MB, Storer BE, Sandmaier BM, Panse JP, Chauncey TR et al. High doses of transplanted CD34+ cells are associated with rapid T-cell engraftment and lessened risk of graft rejection, but not more graft-versus-host disease after nonmyeloablative conditioning and unrelated hematopoietic cell transplantation. Leukemia 2005; 19: 822–828.

    Article  CAS  PubMed  Google Scholar 

  47. Fowler DH, Mossoba ME, Steinberg SM, Halverson DC, Stroncek D, Khuu HM et al. Phase 2 clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after low-intensity allogeneic hematopoietic cell transplantation. Blood 2013; 121: 2864–2874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brehm C, Huenecke S, Quaiser A, Esser R, Bremm M, Kloess S et al. IL-2 stimulated but not unstimulated NK cells induce selective disappearance of peripheral blood cells: concomitant results to a phase I/II study. PLoS ONE 2011; 6: e27351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Linn YC, Niam M, Chu S, Choong A, Yong HX, Heng KK et al. The anti-tumour activity of allogeneic cytokine-induced killer cells in patients who relapse after allogeneic transplant for haematological malignancies. Bone Marrow Transplant 2012; 47: 957–966.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Al-Kadhimi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, Z., Van Meter, E., Abidi, M. et al. Low blood lymphocyte count at 30 days post transplant predicts worse acute GVHD and survival but not relapse in a large retrospective cohort. Bone Marrow Transplant 50, 432–437 (2015). https://doi.org/10.1038/bmt.2014.284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.284

This article is cited by

Search

Quick links