Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cell Procurement

Effects of storage temperature on hematopoietic stability and microbial safety of BM aspirates

Abstract

Bone Marrow (BM) remains a common source for hematopoietic SCT. Due to the transcutaneous approach, contamination with skin bacteria is common. The delay between harvest and transfusion can be considerable, potentially allowing for bacterial proliferation. The optimal transportation temperature, specifically with respect to bacterial growth and consequences thereof for hematopoietic quality, remain undefined. For 72 h, 66 individual BM samples, non-spiked/spiked with different bacteria, stored at 20–24 °C room temperature (RT) or 3–5 °C (cold), were serially analyzed for hematopoietic quality and microbial burden. Under most conditions, hematopoietic quality of BM was equal or better at RT: Typical BM contaminants (P. acnes and S. epidermidis) and E. coli were killed or bacterial proliferation was arrested at RT; hematopoietic quality was not impacted by the contamination. However, several pathogenic bacteria not typically found in BM (S. aureus and K. pneumoniae) proliferated dramatically at RT and impaired hematopoietic quality. Bacterial proliferation was arrested in the cold. The overwhelming majority of BM samples, that is, those that are sterile or contaminated only with skin commensals, will benefit from transportation at RT. Those bacteria that proliferate and perturb hematopoietic quality are not typically found in BM. Our data support recommendations for RT transportation and storage of BM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. NMDP. Trends in allogeneic transplants 2010 Available from: http://marrow.org/Physicians/Unrelated_Search_and_Transplant/Trends_in_Allo_Transplants.aspx#refs (accessed 9 June 2013).

  2. Gratwohl A, Baldomero H, Frauendorfer K, Urbano-Ispizua A, Niederwieser D . Results of the EBMT activity survey 2005 on haematopoietic stem cell transplantation: focus on increasing use of unrelated donors. Bone Marrow Transplant 2007; 39: 71–87.

    Article  CAS  Google Scholar 

  3. van Rood JJ, Oudshoorn M . Eleven million donors in Bone Marrow Donors Worldwide! Time for reassessment? Bone Marrow Transplant 2008; 41: 1–9.

    Article  CAS  Google Scholar 

  4. Blaise D, Kuentz M, Fortanier C, Bourhis JH, Milpied N, Sutton L et al. Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Société Française de Greffe de Moelle. J Clin Oncol 2000; 18: 537–546.

    Article  CAS  Google Scholar 

  5. Schmitz N, Beksac M, Hasenclever D, Bacigalupo A, Ruutu T, Nagler A et al. Transplantation of mobilized peripheral blood cells to HLA-identical siblings with standard-risk leukemia. Blood 2002; 100: 761–767.

    Article  CAS  Google Scholar 

  6. Champlin RE, Schmitz N, Horowitz MM, Chapuis B, Chopra R, Cornelissen JJ et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood 2000; 95: 3702–3709.

    CAS  PubMed  Google Scholar 

  7. Thomas ED, Storb R . Technique for human marrow grafting. Blood 1970; 36: 507–515.

    CAS  PubMed  Google Scholar 

  8. Jacobs MR, Good CE, Fox RM, Roman KP, Lazarus HM . Microbial contamination of hematopoietic progenitor and other regenerative cells used in transplantation and regenerative medicine. Transfusion, (e-pub ahead of print 5 March 2013; doi:10.1111/trf.12150).

  9. Lowder JN, Whelton P . Microbial contamination of cellular products for hematolymphoid transplantation therapy: assessment of the problem and strategies to minimize the clinical impact. Cytotherapy 2003; 5: 377–390.

    Article  CAS  Google Scholar 

  10. Prince HM, Page SR, Keating A, Saragosa RF, Vukovic NM, Imrie KR et al. Microbial contamination of harvested bone marrow and peripheral blood. Bone Marrow Transplant 1995; 15: 87–91.

    CAS  PubMed  Google Scholar 

  11. Padley D, Koontz F, Trigg ME, Gingrich R, Strauss RG . Bacterial contamination rates following processing of bone marrow and peripheral blood progenitor cell preparations. Transfusion 1996; 36: 53–56.

    Article  CAS  Google Scholar 

  12. Kamble R, Pant S, Selby GB, Kharfan-Dabaja MA, Sethi S, Kratochvil K et al. Microbial contamination of hematopoietic progenitor cell grafts-incidence, clinical outcome, and cost-effectiveness: an analysis of 735 grafts. Transfusion 2005; 45: 874–878.

    Article  Google Scholar 

  13. Panterne B . Ten Years of External Quality Control for Cellular Therapy Products in France Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications. InTech 2011 Available from: URL:http://www.intechopen.com/books/progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications/ten-years-of-external-quality-control-for-cellular-therapy-products-in-france. (last accessed 9-06-2013).

  14. Vanneaux V, Foïs E, Robin M, Rea D, Latour RPde, Biscay N et al. Microbial contamination of BM products before and after processing: a report of incidence and immediate adverse events in 257 grafts. Cytotherapy 2007; 9: 508–513.

    Article  CAS  Google Scholar 

  15. Jestice HK, Farrington M, Hunt C, Matthews I, Scott MA, Foreman J et al. Bacterial contamination of peripheral blood progenitor cells for transplantation. Transfus Med 1996; 6: 103–110.

    Article  CAS  Google Scholar 

  16. Rowley SD, Davis J, Dick J, Braine HG, Charache P, Saral R et al. Bacterial contamination of bone marrow grafts intended for autologous and allogeneic bone marrow transplantation. Incidence and clinical significance. Transfusion 1988; 28: 109–112.

    Article  CAS  Google Scholar 

  17. Lazarus HM, Magalhaes-Silverman M, Fox RM, Creger RJ, Jacobs M . Contamination during in vitro processing of bone marrow for transplantation: clinical significance. Bone Marrow Transplant 1991; 7: 241–246.

    CAS  PubMed  Google Scholar 

  18. Webb IJ, Coral FS, Andersen JW, Elias AD, Finberg RW, Nadler LM et al. Sources and sequelae of bacterial contamination of hematopoietic stem cell components: implications for the safety of hematotherapy and graft engineering. Transfusion 1996; 36: 782–788.

    Article  CAS  Google Scholar 

  19. Schwella N, Zimmermann R, Heuft HG, Blasczyk R, Beyer J, Rick O et al. Microbiologic contamination of peripheral blood stem cell autografts. Vox Sang 1994; 67: 32–35.

    Article  CAS  Google Scholar 

  20. Goldman JM . A special report: bone marrow transplants using volunteer donors—recommendations and requirements for a standardized practice throughout the world—1994 update. The WMDA Executive Committee. Blood 1994; 84: 2833–2839.

    CAS  PubMed  Google Scholar 

  21. Petersen FB, Weinberg P, Hansen JA, Thomas ED . Collection and transportation of human bone marrow cells from unrelated donors. Transfus Sci 1991; 12: 155–159.

    Article  CAS  Google Scholar 

  22. Miller JP Issues in Transportation of URD PBSC and Marrow Products. Available from: URL: http://www.celltherapysociety.org/files/PDF/Meetings/ISCT_2009/Presentations/Wednesday/Grande_BallroomA/Wed_0900_1_Miller_Ball_A.pdf. (last accessed 9-06-2013).

  23. Bone Marrow Transplant Clinical Trials Network A Phase III Randomized, Multicenter Trial Comparting G-CSF Mobilized Peripheral Blood Stem Cell with Marrow Transplantation from HLA Compatible Unrelated Donors. BMT CTN Protocol 0201, Version 8.0. Available from: https://web.emmes.com/study/bmt2/protocol/0201__protocol/0201_ PB_v_BM_Protocol__v8.0.pdf (last accessed 9-06-2013).

  24. Zentrales Knochenmarkspender-Register Deutschland (ZKRD). Deutsche Standards für die nicht verwandte Blutstammzellspende [German standards for unrelated stem cell donations]—Version 8; 2012.

  25. Cleaver SA, Warren P, Kern M, Hurley CK, Raffoux C, Keller J et al. Donor work-up and transport of bone marrow—recommendations and requirements for a standardized practice throughout the world from the Donor Registries and Quality Assurance Working Groups of the World Marrow Donor Association (WMDA). Bone Marrow Transplant 1997; 20: 621–629.

    Article  CAS  Google Scholar 

  26. Dauber K, Becker D, Odendahl M, Seifried E, Bonig H, Tonn T et al. Enumeration of viable CD34(+) cells by flow cytometry in blood, bone marrow and cord blood: results of a study of the novel BD stem cell enumeration kit. Cytotherapy 2011; 13: 449–458.

    Article  CAS  Google Scholar 

  27. Bonig H, Priestley GV, Oehler V, Papayannopoulou T . Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 2007; 35: 326–334.

    Article  CAS  Google Scholar 

  28. Thorpe TC, Wilson ML, Turner JE, DiGuiseppi JL, Willert M, Mirrett S et al. BacT/Alert: an automated colorimetric microbial detection system. J Clin Microbiol 1990; 28: 1608–1612.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dreier J, Vollmer T, Kleesiek K . Novel flow cytometry-based screening for bacterial contamination of donor platelet preparations compared with other rapid screening methods. Clin Chem 2009; 55: 1492–1502.

    Article  CAS  Google Scholar 

  30. Sireis W, Rüster B, Daiss C, Hourfar MK, Capalbo G, Pfeiffer H et al. Extension of platelet shelf life from 4 to 5 days by implementation of a new screening strategy in Germany. Vox Sang 2011; 101: 191–199.

    Article  CAS  Google Scholar 

  31. Sireis W, Hourfar MK, Seifried E, Schmidt M . How to improve blood safety with respect to bacterial contaminations? Vox Sang 2012; 103: 87–88.

    Article  CAS  Google Scholar 

  32. Foeken LM, Green A, Hurley CK, Marry E, Wiegand T, Oudshoorn M . Monitoring the international use of unrelated donors for transplantation: the WMDA annual reports. Bone Marrow Transplant 2010; 45: 811–818.

    Article  CAS  Google Scholar 

  33. NMDP (ed).. NMDP Standards 20th ed. National Marrow Donor Program: St.: Paul, MN, 2009.

  34. Lazarus HM, Kan F, Tarima S, Champlin RE, Confer DL, Frey N et al. Rapid transport and infusion of hematopoietic cells is associated with improved outcome after myeloablative therapy and unrelated donor transplant. Biol Blood Marrow Transplant 2009; 15: 589–596.

    Article  Google Scholar 

  35. Dauber K, Odendahl M, Becker D, Tonn T, Bonig H . 7-AAD systematically overestimates viability of CD34 cells in previously frozen samples. Vox Sanguinis 2010; 97: 478.

    Google Scholar 

  36. Kao GS, Kim HT, Daley H, Ritz J, Burger SR, Kelley L et al. Validation of short-term handling and storage conditions for marrow and peripheral blood stem cell products. Transfusion 2011; 51: 137–147.

    Article  Google Scholar 

  37. Fry LJ, Giner SQ, Gomez SG, Green M, Anderson S, Horder J et al. Avoiding room temperature storage and delayed cryopreservation provide better postthaw potency in hematopoietic progenitor cell grafts. Transfusion 2013; 53: 1834–1842.

    Article  Google Scholar 

  38. Antonenas V, Garvin F, Webb M, Sartor M, Bradstock KF, Gottlieb D . Fresh PBSC harvests, but not BM, show temperature-related loss of CD34 viability during storage and transport. Cytotherapy 2006; 8: 158–165.

    Article  CAS  Google Scholar 

  39. Lasky LC, McCullough J, Zanjani ED . Liquid storage of unseparated human bone marrow. Evaluation of hematopoietic progenitors by clonal assay. Transfusion 1986; 26: 331–334.

    Article  CAS  Google Scholar 

  40. Schepers KG, Davis JM, Rowley SD . Incidence of bacterial contamination of bone marrow grafts. Prog Clin Biol Res 1992; 377: 379–384.

    CAS  PubMed  Google Scholar 

  41. Attarian H, Bensinger WI, Buckner CD, McDonald DL, Rowley SD . Microbial contamination of peripheral blood stem cell collections. Bone Marrow Transplant 1996; 17: 699–702.

    CAS  PubMed  Google Scholar 

  42. Klein MA, Kadidlo D, McCullough J, McKenna DH, Burns LJ . Microbial contamination of hematopoietic stem cell products: incidence and clinical sequelae. Biol. Blood Marrow Transplant 2006; 12: 1142–1149.

    Article  Google Scholar 

  43. Padley DJ, Dietz AB, Gastineau DA . Sterility testing of hematopoietic progenitor cell products: a single-institution series of culture-positive rates and successful infusion of culture-positive products. Transfusion 2007; 47: 636–643.

    Article  Google Scholar 

  44. Brecher ME, Holland PV, Pineda AA, Tegtmeier GE, Yomtovian R . Growth of bacteria in inoculated platelets: implications for bacteria detection and the extension of platelet storage. Transfusion 2000; 40: 1308–1312.

    Article  CAS  Google Scholar 

  45. Hillyer CD, Josephson CD, Blajchman MA, Vostal JG, Epstein JS, Goodman JL . Bacterial contamination of blood components: risks, strategies, and regulation: joint ASH and AABB educational session in transfusion medicine. Hematology Am Soc Hematol Educ Program 2003; 2003: 575–589.

    Article  Google Scholar 

  46. Montag T, Nicol S, Schurig U, Heiden M, Huber H, Sanzenbacher R et al. Microbial safety of cell based medicinal products–what can we learn from cellular blood components? Clin Chem Lab Med 2008; 46: 963–965.

    CAS  PubMed  Google Scholar 

  47. Leeming JP, Holland KT, Cunliffe WJ . The microbial ecology of pilosebaceous units isolated from human skin. J Gen Microbiol 1984; 130: 803–807.

    CAS  PubMed  Google Scholar 

  48. Wagner SJ, Robinette D . Evaluation of an automated microbiologic blood culture device for detection of bacteria in platelet components. Transfusion 1998; 38: 674–679.

    Article  CAS  Google Scholar 

  49. Brecher ME, Means N, Jere CS, Heath D, Rothenberg S, Stutzman LC . Evaluation of an automated culture system for detecting bacterial contamination of platelets: an analysis with 15 contaminating organisms. Transfusion 2001; 41: 477–482.

    Article  CAS  Google Scholar 

  50. Brecher ME, Hay SN, Rose AD, Rothenberg SJ . Evaluation of BacT/ALERT plastic culture bottles for use in testing pooled whole blood-derived leukoreduced platelet-rich plasma platelets with a single contaminated unit. Transfusion 2005; 45: 1512–1517.

    Article  CAS  Google Scholar 

  51. Adams MR, Moss MO . Food Microbiology 3rd ed. RSC Publishing: Cambridge, UK, 2008.

    Google Scholar 

  52. Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds).. The Prokaryotes. Springer: New York, NY, 2006.

    Book  Google Scholar 

  53. Paul-Ehrlich-Institut Stellungnahme des Paul-Ehrlich-Instituts zur mikrobiologischen Kontrolle von hämatopoietischen Stammzellpräparaten; 2012. Available from: http://www.pei.de/SharedDocs/Downloads/blut/stammzellen-genehmigung-21a-amg/pei-stellungnahme-mikrobiologische-kontrolle-stammzellen.pdf;jsessionid=373BB1831632E9664A2896E6724B2F19.1_cid354?__blob=publicationFile&v=3 (accessed 9 June 2013).

  54. Mohr H, Bayer A, Gravemann U, Müller TH . Elimination and multiplication of bacteria during preparation and storage of buffy coat-derived platelet concentrates. Transfusion 2006; 46: 949–955.

    Article  Google Scholar 

  55. Kuehnert MJ, Roth VR, Haley NR, Gregory KR, Elder KV, Schreiber GB et al. Transfusion-transmitted bacterial infection in the United States, 1998 through 2000. Transfusion 2001; 41: 1493–1499.

    Article  CAS  Google Scholar 

  56. Melly MA, Thomison JB, Rogers DE . Fate of staphylococci within human leukocytes. J Exp Med 1960; 112: 1121–1130.

    Article  CAS  Google Scholar 

  57. Vries R de, Faber J (eds.). Hemovigilance: An Effective Tool for Improving Transfusion Safety 1st ed. Wiley & Sons: Chichester, UK, 2012.

    Book  Google Scholar 

  58. Högman CF, Gong J, Eriksson L, Hambraeus A, Johansson CS . White cells protect donor blood against bacterial contamination. Transfusion 1991; 31: 620–626.

    Article  Google Scholar 

  59. Sanz C, Pereira A, Vila J, Faundez AI, Gomez J, Ordinas A . Growth of bacteria in platelet concentrates obtained from whole blood stored for 16 h at 22 degrees C before component preparation. Transfusion 1997; 37: 251–254.

    Article  CAS  Google Scholar 

  60. Cohen A, Tepperberg M, Waters-Pick B, Coniglio D, Perfect J, Peters WP et al. The significance of microbial cultures of the hematopoietic support for patients receiving high-dose chemotherapy. J Hematother 1996; 5: 289–294.

    Article  CAS  Google Scholar 

  61. Kelley JM, Onderdonk AB, Kao G . Bacillus cereus septicemia attributed to a matched unrelated bone marrow transplant. Transfusion 2013; 53: 394–397.

    Article  Google Scholar 

  62. Medeiros CRde, Faoro LN, Friedrich ML, Pereira N, Cunha CA, Pasquini R . Unrelated bone marrow as a source of Bacillus cereus causing septic shock. Bone Marrow Transplant 2000; 26: 1259–1260.

    Article  Google Scholar 

  63. Nifong TP, Ehmann WC, Mierski JA, Domen RE, Rybka WB . Favorable outcome after infusion of coagulase-negative staphylococci-contaminated peripheral blood hematopoietic cells for autologous transplantation. Arch Pathol Lab Med 2003; 127: e19–e21.

    PubMed  Google Scholar 

  64. Barrett BB, Andersen JW, Anderson KC . Strategies for the avoidance of bacterial contamination of blood components. Transfusion 1993; 33: 228–233.

    Article  CAS  Google Scholar 

  65. Buchholz DH, Young VM, Friedman NR, Reilly JA, Mardiney MR . Detection and quantitation of bacteria in platelet products stored at ambient temperature. Transfusion 1973; 13: 268–275.

    Article  CAS  Google Scholar 

  66. Robert Koch-Institut (RKI) Reduktion des Septikämierisikos bei der Anwendung von Thrombozytenkonzentraten; 2008. Available from: URL:http://edoc.rki.de/documents/rki_ab/re8QBEDfM7uFI/PDF/ 29wmzUschTXdbM.pdf. (last accessed 9-06-2013).

Download references

Acknowledgements

No outside funding was used. The data are part of the doctoral thesis of SH. Dr Ute Sicker, Paul-Ehrlich-Institute, is acknowledged for helpful advice and careful reading of the final version of this manuscript. ES and HB are members of the LOEWE Cell and Gene Therapy Frankfurt faculty, funded by Hessian Ministry of Higher Education, Research and the Arts ref.no.: III L 4 518/17.004 (2010).

Author contributions

SH, WS, VAJK, ES, MS and HB planned the studies. SH, KH, DK and KD performed experiments. SH, MS and HB interpreted data and wrote the manuscript. All authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Bönig.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, S., Sireis, W., Hourfar, K. et al. Effects of storage temperature on hematopoietic stability and microbial safety of BM aspirates. Bone Marrow Transplant 49, 338–348 (2014). https://doi.org/10.1038/bmt.2013.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2013.176

Keywords

This article is cited by

Search

Quick links