Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Experimental basis of cord blood transplantation

Abstract

Efforts are needed to enhance the efficacy of cord blood (CB) transplantation. Laboratory information set the stage for the first and subsequent CB transplants, and will be instrumental in continuing to advance the field. This paper offers a brief understanding of the current state of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) biology, a look back at laboratory studies leading to the first CB transplants, and a discussion of the possible means to enhance CB transplantation. Results show that physical recovery of greater numbers of HPCs is possible after CB is collected by perfusing the placenta, but how realistic this procedure is for collection of CB to be banked is open to question. We also show that the chemokine stromal cell-derived factor-1/CXCL12 can enhance the ex vivo expansion of CB HPCs beyond that of the combination of SCF, Flt3-ligand and TPO. Advances in cytokine and stromal cell biology, and in intracellular signals mediating the effects of cytokines/stromal cells should be considered in the context of future efforts to enhance functional activities of donor CB HSCs and HPCs and the microenvironmental niche of the recipient, which is required for acceptance and nurturing these HSCs/HPCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Broxmeyer HE . Cord Blood Transplantation: A Mini Review Celebrating the 20th Anniversary of the First Cord Blood Transplant. The Hematologist 6(Issue 1; Jan/Feb 2009):7. Publication of the American Society of Hematology.

  2. Broxmeyer HE, Smith FO . Cord Blood Hematopoietic Cell Transplantation. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG (eds). Thomas' Hematopoietic Cell Transplantation, 4th edn. Wiley-Blackwell, West Sussex, United Kingdom, Section 4, Chapter 3, 2009, pp 559–576.

    Chapter  Google Scholar 

  3. Gluckman E, Broxmeyer HE, Auerbach AD, Friedman H, Douglas GW, Devergie A et al. Hematopoietic reconstitution in a patient with Fanconi anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321: 1174–1178.

    Article  CAS  Google Scholar 

  4. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989; 86: 3828–3832.

    Article  CAS  Google Scholar 

  5. Broxmeyer HE, Kurtzberg J, Gluckman E, Auerbach AD, Douglas G, Cooper S et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 1991; 17: 313–329.

    CAS  PubMed  Google Scholar 

  6. Broxmeyer HE . Introduction: Past, present and future of cord blood transplantation. In: Broxmeyer HE (ed). Cellular Characteristics of Cord Blood and Cord Blood Transplantation. Amer. Assoc. Blood Banking, 1997, pp 1–11.

    Google Scholar 

  7. Broxmeyer HE . Phenotypic and proliferative characteristics of cord blood hematopoietic stem and progenitor cells and gene transfer. In: Broxmeyer HE (ed). Cellular Characteristics of Cord Blood and Cord Blood Transplantation. Amer. Assoc. Blood Banking, 1997, pp 11–44.

    Google Scholar 

  8. Broxmeyer HE . Introduction. Cord blood transplantation: Looking back and to the future. In: Cohen SBA, Gluckman E, Rubinstein P, Madrigal JA (eds). Cord Blood Characteristics: Role in Stem Cell Transplantation. M Dunitz, London, UK, 2000, pp 1–12.

    Google Scholar 

  9. Ballen K, Broxmeyer HE, McCullough J, Piaciabello W, Rebulla P, Verfaillie CM et al. Current status of cord blood banking and transplantation in the United States and Europe. Biol Blood Marrow Transplant 2001; 7: 635–645.

    Article  CAS  Google Scholar 

  10. Weissman IL, Shizuru JA . The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112: 3543–3553.

    Article  CAS  Google Scholar 

  11. Shaheen M, Broxmeyer HE . The humoral regulation of hematopoiesis. In: Hoffman R, Benz EJ, Jr, Shattil SJ, Furie B, Silberstein LE, McGlave P, Heslop H, Anastasi, J (eds). Hematology: Basic Principles and Practice, 5th edn Elsevier Churchill Livingston, Philadelphia, PA. Part III, Chapter 24, 2009, pp 253–275.

    Google Scholar 

  12. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 652–655.

    Article  Google Scholar 

  13. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  Google Scholar 

  14. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  Google Scholar 

  15. Loh Y-H, Agarwal S, Park I-H, Urbach A, Huo H, Heffner GC et al. Generation of induced pluripotent stem cells from human blood. Blood 2009; 113: 5476–5479.

    Article  CAS  Google Scholar 

  16. Broxmeyer HE, Srour E, Orschell C, Ingram DA, Cooper S, Plett PA et al. Cord Blood-Derived Stem and Progenitor Cells, Methods in Enzymology. In: Klimanskaya I, Lanza R (eds). Academic Press, Elsevier Science: San Diego, CA, Vol 419 2006, pp 439–473.

  17. Broxmeyer HE, Srour E, Orschell C, Ingram DA, Cooper S, Plett PA et al. Cord blood hematopoietic stem and progenitor cells. In: Klimanskaya I, Lanza, R (eds). Essential Stem Cell Methods. Academic Press, Elsevier Science: San Diego, CA, Chapter 17, 2009 (in press).

    Google Scholar 

  18. Osawa M, Hanada K-I, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273: 242–245.

    Article  CAS  Google Scholar 

  19. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  Google Scholar 

  20. Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y et al. Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protocols 2006; 1: 2979–2987.

    Article  CAS  Google Scholar 

  21. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404: 193–197.

    Article  CAS  Google Scholar 

  22. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 2005; 121: 295–306.

    Article  CAS  Google Scholar 

  23. Bodine DM . Animal Models for the Engraftment and Differentiation of Human Hematopoietic stem and progenitor cells. In: Broxmeyer HE (ed). Cord Blood: Biology, Immunology, Banking, and Clinical Transplantation. Bethesda, MD, AABB Press. Chapter 3, 2004, pp 47–64.

    Google Scholar 

  24. Majeti R, Park CY, Weissman IL . Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 2007; 1: 635–645.

    Article  CAS  Google Scholar 

  25. Ruggieri L, Heimfeld S, Broxmeyer HE . Cytokine-dependent ex vivo expansion of early subsets of CD34+ cord blood myeloid progenitors is enhanced by cord blood plasma, but expansion of the more mature subsets of progenitors is favored. Blood Cells 1994; 20: 436–454.

    CAS  PubMed  Google Scholar 

  26. Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE . Expansion of human cord blood CD34+ CD38− cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 2000; 95: 102–110.

    CAS  PubMed  Google Scholar 

  27. Mantel C, Broxmeyer HE . A new connection between the spindle checkpoint, asymmetric cell division, and cytokine signaling. Cell Cycle 2007; 6: 144–146.

    Article  CAS  Google Scholar 

  28. Adams GB, Scadden DT . The hematopoietic stem cell in its place. Nat Immunol 2006; 7: 333–337.

    Article  CAS  Google Scholar 

  29. Dar A, Kollet O, Lapidot T . Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 2006; 34: 967–975.

    Article  CAS  Google Scholar 

  30. Spiegel A, Kalinkovich A, Shivtiel S, Kollet O, Lapidot T . Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 2008; 3: 484–492.

    Article  CAS  Google Scholar 

  31. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10: 64–71.

    Article  CAS  Google Scholar 

  32. Campbell C, Risueno RM, Salati S, Guezguez B, Bhatia M . Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Curr Opin Hematol 2008; 15: 319–325.

    Article  CAS  Google Scholar 

  33. Tse W, Bunting KD, Laughlin MJ . New insights into cord blood stem cell transplantation. Curr Opin Hematol 2008; 15: 279–284.

    Article  Google Scholar 

  34. Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson JA, Bodine D . High efficiency recovery of hematopoietic progenitor cells with extensive proliferative and ex-vivo expansion activity and of hematopoietic stem cells with NOD/SCID mouse repopulation ability from human cord blood stored frozen for 15 years. Proc Natl Acad Sci USA 2003; 100: 645–650.

    Article  CAS  Google Scholar 

  35. Bornstein R, Flores AI, Montalban MA, Del Rey JJ, De La Serna J, Gilsanz F . A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem Cells 2005; 23: 324–334.

    Article  Google Scholar 

  36. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 1997; 89: 2644–2653.

    CAS  PubMed  Google Scholar 

  37. Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, Fagioli F et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 1999; 93: 3736–3749.

    CAS  PubMed  Google Scholar 

  38. Broxmeyer HE, Kohli L, Kim CH, Lee Y, Mantel C, Cooper S et al. Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leuk Biol 2003; 73: 630–638.

    Article  CAS  Google Scholar 

  39. Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee YH, Mantel C et al. Transgenic expression of stromal cell derived factor-1/CXCL12 enhances myeloid progenitor cell survival/anti-apoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol 2003; 170: 421–429.

    Article  CAS  Google Scholar 

  40. Lee Y, Gotoh A, Kwon H-J, You M, Kohli L, Mantel C et al. Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 2002; 99: 4307–4317.

    Article  CAS  Google Scholar 

  41. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE . SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells 2005; 23: 1324–1332.

    Article  CAS  Google Scholar 

  42. Broxmeyer HE, Mejia JAH, Hangoc G, Barese C, Dinauer M, Cooper S . SDF-1/CXCL12 enhances in vitro replating capacity of murine and human multipotential and macrophage progenitor cells. Stem Cells Develop 2007; 16: 589–596.

    Article  CAS  Google Scholar 

  43. Christopheron KW, Hangoc G, Broxmeyer HE . Cell surface peptidase CD26/DPPIV regulates CXCL12/SDF-1a mediated chemotaxis of human CD34+ progenitor cells. J Immunol 2002; 169: 7000–7008.

    Article  Google Scholar 

  44. Christopherson II KW, Hangoc G, Mantel C, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    Article  CAS  Google Scholar 

  45. Tian C, Bagley J, Forman D, Iacomini J . Inhibition of CD26 peptidase activity significantly improves engraftment of retrovirally transduced hematopoietic progenitors. Gene Therapy 2006; 13: 652–658.

    Article  CAS  Google Scholar 

  46. Peranteau WH, Endo M, Adibe OO, Merchant A, Zoltick P, Flake AW . CD26 inhibition enhances allogeneic donor cell homing and engraftment after in utero bone marrow transplantation. Blood 2006; 108: 4268–4274.

    Article  CAS  Google Scholar 

  47. Campbell TB, Hangoc G, Liu Y, Pollok K, Broxmeyer HE . Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Develop 2007; 16: 347–354.

    Article  CAS  Google Scholar 

  48. Christopherson KW, Paganessi L, Napier S, Porecha NK . CD26 inhibition on CD34+ or lineage- human umbilical cord blood donor HSC/HPC improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice. Stem Cells Develop 2007; 16: 355–360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H E Broxmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broxmeyer, H., Cooper, S., Hass, D. et al. Experimental basis of cord blood transplantation. Bone Marrow Transplant 44, 627–633 (2009). https://doi.org/10.1038/bmt.2009.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.285

Keywords

This article is cited by

Search

Quick links