Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Host Disease

Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD

Abstract

The p19 dimer of interleukin 23 (IL-23) has been reported to have a major role in the pathogenesis of many experimental and clinical autoimmune diseases and may also have a prominent role in transplantation. We reasoned that deficiency of p19 in the allogeneic donor transplant might reduce the inflammation caused by acute GVHD (aGVHD). The major histocompatibility complex-2 (H2d) BALB/c mice were subjected to 8.5 Gy TBI, followed by transplantation with 10 × 106 BM and 2.5 × 106 spleen cells from H2d BALB/c, H2b C57Bl/6 (B6) or H2b p19−/− donors. In all, 75% of the p19−/− transplanted mice survived, compared with only 12.5% of the B6 transplanted mice. This superior survival is correlated with significantly less severe aGVHD, absence of p19 after transplantation, less upregulation of mRNA and lower serum levels of IL-17 as compared with the B6 transplants. TBI alone significantly upregulated transforming growth factor-β (TGF-β), IL-6 and p19 mRNA levels in host BALB/c mice, possibly providing the milieu to induce IL-17 in p19−/− donor cells. IL-22, another cytokine, the induction of which in T-helper 17 (Th17) cells is supported by p19, was upregulated in BALB/c hosts but not in transplanted B6 or p19 donor cells, and may not have had a major role in modifying aGVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Symington FW, Symington BE, Liu PY, Viquet H, Santhanam U, Sehgal PB . The relationship of serum IL-6 levels to acute graft-versus-host disease and hepatorenal disease after human bone marrow transplantation. Transplantation 1992; 54: 457–462.

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara JLM, Abhyankar S, Gilliland DG . Cytokine storm of graft-versus-host disease: a critical role of interleukin-1. Transpl Proc 1993; 25: 1216–1217.

    CAS  Google Scholar 

  3. Xun CQ, Thompson JS, Jennings CD, Brown SA, Widmer MB . Effect of total body irradiation, busulfan-cyclophosphamide or cyclophosphamide conditioning on inflammatory cytokines in H2 incompatible SCID mice. Blood 1994; 83: 2360–2367.

    CAS  PubMed  Google Scholar 

  4. Xun CQ, Tsuchida M, Thompson JS . Delaying transplantation after total body irradiation is a simple and effective way to reduce aGVHD. Transplantation 1997; 64: 1–6.

    Article  Google Scholar 

  5. Ferrara JL, Reddy P . Pathophysiology of graft-versus-host-disease. Semin Hematol 2006; 43: 3–10.

    Article  CAS  PubMed  Google Scholar 

  6. Sykes M, Pearson DA, Taylor PA, Szot GL, Goldman SJ, Blazar BR . Dose and timing of interleukin (IL)-12 and timing and type of total body irradiation: effects on graft-versus-host disease inhibition and toxicity of exogenous IL-12 in murine bone marrow transplant recipients. Biol Blood Marrow Transplant 1999; 5: 277–284.

    Article  CAS  PubMed  Google Scholar 

  7. Yang YG . The role of interleukin-12 and interferon-gamma in GVHD and GVL. Cytokines Cell Mol Ther 2000; 6: 41–46.

    Article  CAS  PubMed  Google Scholar 

  8. Goriely S, Goldman M . The interleukin-12 family: new players in transplantation immunity. Am J Transplant 2006; 7: 278–284.

    Article  Google Scholar 

  9. Alber G, Al-Robaly S, Kleinschek M, Knauer J, Krumbholz P, Richter J et al. Induction of immunity and inflammation by interleukin-12 family members. Ernst-Schering-Res Found Workshop 2006; 56: 107–127.

    Article  Google Scholar 

  10. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201: 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kreymborg K, Bohlmann U, Becher B . IL-23 changing the verdict on IL-12 function in inflammation and autoimmunity. Expert Opin Ther Target 2005; 9: 1123–1136.

    Article  CAS  Google Scholar 

  12. Hunter CA . New IL-12 family members: Il-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 2005; 5: P521–P531.

    Article  Google Scholar 

  13. Chen Y, Langish CL, McKenzie B, Joyce-Sjaikjh B, Stumhofer JS, McClanahan T et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006; 116: 1317–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yen D, Cheung J, Scheerens H, Poulet P, McClanahan T, McKenzie B et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116: 1310–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX . Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 2007; 130: 490–501.

    Article  PubMed  Google Scholar 

  16. Liu FL, Chen CH, Chu SJ, Chen JH, Lai JH, Sytwu HK et al. Interleukin (IL)-23p19 expression induced by IL-1beta in human fibroblast-like synoviocytes with rheumatoid arthritis via active nuclear factor-kappaB and AP-1 dependent pathway. Rheumatology 2007; 46: 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  17. Fitch E, Harper E, Skorcheva I, Kurtz SE, Blauvelt A . Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep 2007; 8: 461–467.

    Article  Google Scholar 

  18. Zhang Z, Andoh A, Yasui H, Inatomi O, Hata K, Tsuijikawa T et al. Interleukin -1beta and tumor necrosis factor-alpha upregulate interleukin-23 subunit p19 gene expression in human colonic subepithelial myofibroblasts. Int J Mol Med 2005; 15: 79–83.

    CAS  PubMed  Google Scholar 

  19. Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB et al. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 2006; 176: 5652–5661.

    Article  CAS  PubMed  Google Scholar 

  20. Kaiga T, Sato M, Kaneda H, Iwakura Y, Takayama T, Tahara H . Systemic administration of IL-23 induces potent antitumor immunity primarily mediated through Th1-type response in association with endogenously expressed IL-12. J Immunol 2007; 178: 7671–7680.

    Article  Google Scholar 

  21. Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A . The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Target 2009; 8: 40–52.

    Article  CAS  Google Scholar 

  22. Kolls JK, Linden A . Interleukin-17 family members and inflammation. Immunity 2004; 21: 467–476.

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi Y, Fujio K, Shoda H, Okamoto A, Tsuno NH, Takahashi K et al. IL-17B and IL-17C are associated with TNF-alpha production and contribute to the exacerbation of inflammatory arthritis. J Immunol 2007; 179: 7128–7136.

    Article  CAS  PubMed  Google Scholar 

  24. Witowski J, Ksiazek K, Jorres A . Interleukin-17: a mediator of inflammatory responses. Cell Mol Life Sci 2004; 61: 567–579.

    Article  CAS  PubMed  Google Scholar 

  25. Miyamota M, Prause O, Sjostrand M, Laan M, Lotvali J, Linden A . Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 2003; 170: 4665–4672.

    Article  Google Scholar 

  26. Lohr J, Knoechal B, Wang JJ, Villarino AV, Abbas AK . The role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J Exp Med 2006; 203: 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irmler IM, Gajda M, Brauer R . Exacerbation of antigen-induced arthritis in IFN-gamma deficient mice as a result of unrestricted IL-17 response. J Immunol 2007; 179: 6228–6236.

    Article  CAS  PubMed  Google Scholar 

  28. Iwakura Y, Ishigame H . The IL-23/IL-17 axis in inflammation. J Clin Invest 2006; 116: 1218–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonysamy MA, Fanslow WC, Fu F, Qian S, Trout AB, Thomson AW . A novel IL-17 antagonist promotes heart graft survival. Transplant Proc 1999; 31: 93.

    Article  CAS  PubMed  Google Scholar 

  30. Tang H, Subbotin VM, Antonysamy MA, Truot AG, Rao AS, Thomson AW . Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation 2001; 72: 348–350.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Wood KJ . Interleukin-23 and Th17 cells in transplantation immunity: does IL-23+IL-17 equal rejection? Transplantation 2007; 84: 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  32. Afsali B, Lombardi G, Lechler RI, Lord GM . The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 2007; 148: 32–46.

    Article  Google Scholar 

  33. Yaun X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Dnnarumma M et al. A novel role of CD4Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 2008; 205: 3133–3144.

    Article  Google Scholar 

  34. Fabrega E, Lopez-Hoyos M, San Segundo D, Casafont F, Pons-Romero F . Changes in the serum levels of interleukin-17/interleukin-23 during acute rejection in liver transplantation. Liver Transplant 2009; 15: 629–633.

    Article  Google Scholar 

  35. Chen X, Vodanovic-Jankovic S, Johnson B, Keller M, Komorowski R, Drobyski WR . Absence of regulatory T control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood 2007; 110: 3804–3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mauermann N, Burian J, von Garnier C, Dirnhofer S, Germano D, Schuett C et al. Interferon-g regulates idiopathic pneumonia syndrome, a Th17+CD4+ T-cell-mediated graft-versus-host disease. Resp Crit Care Med 2008; 178: 379–388.

    Article  CAS  Google Scholar 

  37. Kappel LW, Gabarielle GL, King CG, Suh DY, Smith OM, Ligh C et al. Vvan den Brink MRM. IL-17 contributes to CD4-mediaed graft-versus-host disease. Blood 2009; 113: 945–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carlson MJ, West ML, Coghill JM, Panoskaitsis-Mortan A, Blazer BR, Serody JS . In vitro differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathological manifestations. Blood 2009; 113: 1365–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Das R, Chen X, Komorowski R, Hessner MJ, Drobyski WR . Interleukin-23 secretion in donor antigen-presenting cells is critical for organ-specific pathology in graft-versus-host disease. Blood 2009; 113: 2352–2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson J, Chu Y, Glass J, Brown S . IL-23 plays a critical role in the pathogenesis of acute but not chronic graft versus host disease. Transplantation 2008; 86 (Suppl 2): 357.

    Article  Google Scholar 

  41. Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh YC et al. Induction of CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J Leukoc Biol 2007; 82: 354–360.

    Article  CAS  PubMed  Google Scholar 

  42. Burrell BE, Csencits KI, Lu G, Grabauskiene S, Bishop DK . CD8+Th17 mediate co-stimulation blockade-resistant allograft rejection in T-beta-deficient mice. J Immunol 2008; 181: 3906–3914.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al. Littman IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8: 967–974.

    Article  CAS  PubMed  Google Scholar 

  44. Bettelli E, Carrier Y, Gao W, Korn T, Stroim TB, Oukkka MJ et al. Reciprocal developmental pathways for the generation of pathogenetic effector TH17 and regulatory T cells. Nature 2006; 441: 235–238.

    Article  CAS  PubMed  Google Scholar 

  45. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORgamma t directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121–1133.

    Article  CAS  PubMed  Google Scholar 

  46. Huang Z, Xie H, Wang R, Sun Z . Retinoid-related orphan receptor gamma t is a potential therapeutic target for controlling inflammatory autoimmunity. Exper Opin Ther Targets 2007; 11: 737–743.

    Article  CAS  Google Scholar 

  47. Mowat AM . Antibodies to IFNγ prevent immunologically mediated intestinal damage in murine graft-versus-host reaction. Immunology 1989; 68: 18–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Niederwieser D, Herold M, Woloszczuk W, Aulitzky W, Meister B, Tilg H et al. Endogenous INF-gamma during human bone marrow transplantation. Analysis of serum levels of interferon and interferon-dependent secondary messages. Transplantation 1990; 50: 620–625.

    Article  CAS  PubMed  Google Scholar 

  49. Yang YG, Dey BR, Sergio JJ, Perason DA, Sykes M . Donor-derived interferon gamma is required for inhibition of acute graft-versus-host disease by interleukin-12. J Clin Invest 1998; 102: 2126–2135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krenger W, Falzarno G, Selmonte J, Synder KM, Byon JCH, Ferrara JLM . Interferon-γ suppresses T-cell proliferation to mitogen via nitric oxide pathway during experimental graft-versus-host disease. Blood 1996; 88: 1113–1121.

    CAS  PubMed  Google Scholar 

  51. Wolk K, Sabat R . Interleukin-22: a novel T and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev 2006; 17: 367–380.

    Article  CAS  PubMed  Google Scholar 

  52. Liang SC, Tan XY, Luxengerg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al. Interleukin (IL) 22 and IL-17 are coexpressed on Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin -22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.

    Article  CAS  PubMed  Google Scholar 

  54. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadiah K et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36: 1309–1323.

    Article  CAS  PubMed  Google Scholar 

  55. Brand S, Beigel F, Zitzmann K, Eichhorst ST, Otte JM, Diepolder H et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 2006; 290: G827–G838.

    Article  CAS  PubMed  Google Scholar 

  56. Kapessidou P, Poulin L, Dumoutier L, Goldman M, Renauld JC, Braun MY . Interleukin-22 deficiency accelerates the rejection of full major histocompatibility complex-disparate heart allografts. Transplant Proc 2008; 40: 1593–1597.

    Article  CAS  PubMed  Google Scholar 

  57. Uyttenhove C, van Snick J . Development of an anti-IL-17A auto-vaccine that prevents experimental auto-immune encephalomyelitis. Eur J Immunol 2005; 36: 2868–2874.

    Article  Google Scholar 

  58. Bowman EP, Chacfkerian AA, Cua DJ . Rationale and safety of anti-interleukin-23 and anti-interleukin 17A therapy. Curr Opin Infect Dis 2006; 19: 245–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Merit Review and Type II Merit Review Grants from the Veterans and also by the Administration and a University of Kentucky Research Graduate Studies award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J., Chu, Y., Glass, J. et al. Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD. Bone Marrow Transplant 45, 712–722 (2010). https://doi.org/10.1038/bmt.2009.215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.215

Keywords

This article is cited by

Search

Quick links