Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

Quantitative monitoring of multi-donor chimerism: a systematic, validated framework for routine analysis

Abstract

Despite therapeutic advantages, double-donor (DD) HSCTs present technical problems for molecular chimerism (CHM) monitoring. These DD chimeras contain three matched DNAs, so that the genomes of donor(s) and recipient often share the same alleles. In the STR assay, shared recipient/donor alleles are common and have identical physico-chemical properties. As a consequence of the latter, they co-migrate in the same band (‘shared peak’), which prevents measuring each allele separately. Without individual allelic measurements, the direct calculation of the chimeric recipient/donor DNA ratio is precluded. This is the first study to document and systematically examine these problems. Its goal was to provide a validated framework for accurate, routine monitoring based on a stepwise analytic paradigm for approximating percent CHM (%CHM) from shared STR-alleles. Analysis of STR-DNA from DD loci showed that at least four of six alleles were typically shared. Despite such extensive allelic sharing, we show how simple arithmetic procedures can be applied for standardized calculation of %CHM based on peak measurements. Criteria for selecting loci suitable for such analysis are provided. Validation of the computational results required analyzing 18 ‘informative’ loci with pre-established reference values for %CHM. In all cases, the results for %CHM, calculated from peak measurements, were ±5% of the reference value. The conclusions of the study are as follows: (1) Multi-donor chimeras, with shared alleles, can be accurately and simply analyzed within the usual limits of STR measurement error; (2) by examining these various facets of DD CHM analysis, this novel study has provided a basis for standardized, routine quantitative monitoring using the STR/VNTR assay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jaing T-H, Yang C-P, Hung I-J, Chen S-H, Sun C-F, Chow R . Transplantation of unrelated donor umbilical cord blood utilizing double-unit grafts for five teenagers with transfusion-dependent thalassemia. Bone Marrow Transplant 2007; 40: 307–311.

    Article  PubMed  Google Scholar 

  2. Horwitz ME, Morris A, Gasparetto C, Sullivan K, Long G, Chute J et al. Myeloablative intravenous busulfan/fludarabine conditioning does not facilitate reliable engraftment of dual umbilical cord blood grafts in adult recipients. Biol Blood Marrow Transplant 2008; 14: 591–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Lima M, St John LS, Wieder ED, Lee MS, McMannis J, Karandish S et al. Double-chimaerism after transplantation of two human leucocyte antigen mismatched, unrelated cord blood units. Br J Haematol 2002; 119: 773–776.

    Article  PubMed  Google Scholar 

  4. Fernandez MN, Fernández MN, Regidor C, Cabrera R, García-Marco J, Briz M et al. Cord blood transplants: early recovery of neutrophils from co-transplanted sibling haploidentical progenitor cells and lack of engraftment of cultured cord blood cells, as ascertained by analysis of DNA polymorphisms. Bone Marrow Transplant 2001; 28: 355–363.

    Article  CAS  PubMed  Google Scholar 

  5. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, McGlave PB, Miller JS et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 2005; 105: 1343–1347.

    Article  CAS  PubMed  Google Scholar 

  6. Haspel RL, Kao G, Yeap BY, Cutler C, Soiffe RJ, Alyea EP et al. Preinfusion variables predict the predominant unit in the setting of reduced-intensity double cord blood transplantation. Bone Marrow Transplant 2008; 41: 523–529.

    Article  CAS  PubMed  Google Scholar 

  7. Ballen KK, Spitzer TR, Yeap BY, McAfee S, Dey BR, Attar E et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant 2007; 13: 82–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kang HJ, Kho SH, Jang MK, Lee SH, Shin HY, Ahn HS . Early engraftment kinetics of two units cord blood transplantation. Bone Marrow Transplant 2006; 38: 197–201.

    Article  CAS  PubMed  Google Scholar 

  9. Verneris MR, Brunstein CG, DeFor TE, Barker JN, Weisdorf DJ, Blazar BR et al. Risk of relapse (REL) after umbilical cord blood transplantation (UCBT) in patients with acute leukemia: marked reduction in recipients of two units. Blood 2005; 106: 93a.

    Google Scholar 

  10. Yoo KH, Kang HJ, Lee SH, Jung HL, Sung KW, Koo GC . Double unit cord blood transplantation in children with acute leukemia. Blood 2005; 106: 578a.

    Google Scholar 

  11. Brunstein CG, Barker JN, Weisdorf DJ, DeFor TE, Miller JS, Blazar BR et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood 2007; 110: 3064–3070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Graves SS, Hogan W, Kuhr CS, Diaconescu R, Harkey MA, Georges GE et al. Stable trichimerism after marrow grafting from 2 DLA-identical canine donors and nonmyeloablative conditioning. Blood 2007; 110: 418–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang-Jo C, Dong-Wook K, Bin C, Yong-Ju K, Bo-Bae P, Hye-Joung K et al. Analysis of engraftment in NOD/SCID mice achieve by multi-donor derived human cord blood transplantation. Korean J Hematol Stem Cell Transplant 2002; 7: 141–149.

    Google Scholar 

  14. Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC et al. Microchimerism of maternal origin persists into adult life. J Clin Invest 1999; 104: 41–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams KM, Nelson JL . Microchimerism: an investigative frontier in autoimmunity and transplantation. JAMA 2004; 291: 1127–1131.

    Article  CAS  PubMed  Google Scholar 

  16. Umeda K, Adachi S, Ishihara H, Higashi Y, Shiota M, Watanabe KI et al. Successful T-cell-replete peripheral blood stem cell transplantation from HLA-haploidentical microchimeric mother to daughter with refractory acute lymphoblastic leukemia using reduced-intensity conditioning. Bone Marrow Transplant 2003; 31: 1061–1063.

    Article  CAS  PubMed  Google Scholar 

  17. Loubière LS, Lambert NC, Flinn LJ, Erickson TD, Yan Z, Guthrie KA et al. Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab Invest 2006; 86: 1185–1192.

    Article  PubMed  Google Scholar 

  18. Steven A . Do maternal cells trigger or perpetuate autoimmune diseases in children? Pediatr Rheumatol 2007; 5: 9 doi:10.1186/1546-0096-5-9.

    Article  Google Scholar 

  19. Kristt D, Klein T . Analysis of Component Ratios in Shared Alleles from Complex STR DNA Mixtures: Application to Chimerism Monitoring in Cases of Sequential Stem Cell Transplantation from Different Donors. J Biomol Tech 2008; 19: 192.

    Google Scholar 

  20. Liesveld JL, Rothberg PG . Mixed chimerism in SCT: conflict for peaceful coexistence? Bone Marrow Transplant 2008; 42: 297–310.

    Article  CAS  PubMed  Google Scholar 

  21. McCann SR, Lawler M . Monitoring outcome: MRD, chimaerism and relapse. In: Apperley J, Carreras E, Gluckman E, Gratwohl A, Masszi T (eds). Haematopoietic Stem Cell Transplantation. EBMT: Berlin, 2004, pp 196–212.

    Google Scholar 

  22. Khan F, Agarwal A, Agrawal S . Significance of chimerism in hematopoietic stem cell transplantation: new variation on an old theme. Bone Marrow Transplant 2004; 34: 1–12.

    Article  CAS  PubMed  Google Scholar 

  23. Kristt D, Stein J, Yaniv I, Klein T . Assessing quantitative chimerism longitudinally: technical considerations, clinical applications and routine feasibility. Bone Marrow Transplant 2007; 39: 255–268.

    Article  CAS  PubMed  Google Scholar 

  24. Thiede C . Diagnostic chimerism analysis after allogeneic stem cell transplantation: new methods and markers. Am J Pharmacogenomics 2004; 4: 177–187.

    Article  CAS  PubMed  Google Scholar 

  25. Butler JM . Commonly used short tandem repeat markers. Forensic DNA Typing, chapter 5. Academic Press: San Diego, 2001, pp 53–79.

    Google Scholar 

  26. Fernandez-Aviles F, Urbano-Ispizua A, Aymerich M, Colomer D, Rovira M, Marinez C et al. Serial quantification of lymphoid and myeloid mixed chimerism using multiplex PCR amplification of short tandem repeat-markers predicts graft rejection and relapse respectively, after allogeneic transplantation of CD34+ selected cell from peripheral blood. Leukemia 2003; 17: 613–620.

    Article  CAS  PubMed  Google Scholar 

  27. Thiede C, Bornhauser M, Ehninger G . Evaluation of STR informativity for chimerism testing—comparative analysis of 27 STR system in 203 matched related donor recipient pairs. Leukemia 2004; 18: 248–254.

    Article  CAS  PubMed  Google Scholar 

  28. Routledge D, Jackson A, Bourn D, Bown N, Cole M, Slatter MA et al. Quantitative assessment of mixed chimerism in allogeneic stem cell transplant patients: a comparison of molecular genetic and cytogenetic approaches. J Pediatr Hematol Oncol 2007; 29: 428–431.

    Article  PubMed  Google Scholar 

  29. Senitzer D, Gaidulis L . Short tandem repeat analysis of engraftment in allogeneic stem cell transplantation. ASHI Q 2001; 25: 49–54.

    Google Scholar 

  30. Madeo D, Capellari A, Castaman G, Barimondi R, Rodeghiero F . Multiplex amplification and fluorimetric detection of short tandem repeats for mixed chimerism after bone marrow transplant. Leuk Lymphoma 2003; 17: 1–10.

    Google Scholar 

  31. Bader P, Beck J, Frey A, Schlegel PG, Hebarth H, Handgretinger R et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant 1998; 21: 487–495.

    Article  CAS  PubMed  Google Scholar 

  32. Kristt D, Israeli M, Narinski R . Hematopoietic chimerism monitoring based on STRs: quantitative platform performance on sequential samples J. Biomol Tech 2005; 16: 392–403.

    Google Scholar 

  33. Koehl U, Beck O, Seifried E, Klingebiel T, Schwabe D, Seidle C . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Frankfurt experience. Leukemia 2003; 17: 232–236.

    Article  CAS  PubMed  Google Scholar 

  34. Thiede C, Lion T . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia 2003; 15: 303–306.

    Google Scholar 

  35. Hancock JP, Goulden NJ, Odakhill A, Steward CG . Quantitative analysis of chimerism after allogeneic stem cell transplantation using immunomagnetic selection and fluorescent microsatellite PCR. Leukemia 2003; 17: 247–251.

    Article  CAS  PubMed  Google Scholar 

  36. Scharf SJ, Smith AG, Hansen JA, McFarland C, Erlich HA . Quantitative determination of bone marrow transplant engraftment using fluorescent polymerase chain reaction primers for human identify markers. Blood 1995; 85: 1954–1963.

    CAS  PubMed  Google Scholar 

  37. Chalandon Y, Vischer S, Helg C, Chapuis B, Roosnek E . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Geneva experience. Leukemia 2003; 17: 228–231.

    Article  CAS  PubMed  Google Scholar 

  38. Schraml E, Daxberger H, Watzinger F, Lion T . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Vienna experience. Leukemia 2003; 17: 224–227.

    Article  CAS  PubMed  Google Scholar 

  39. Acquaviva C, Duval M, Mirebeau D, Bertin R, Cavé H . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Paris-Robert Debré experience. Leukemia 2003; 17: 224–227.

    Article  Google Scholar 

  40. Kreyenberg H, Holle W, Mohrle S, Niethammer D, Bader P . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Tuebingen experience. Leukemia 2003; 17: 237–240.

    Article  CAS  PubMed  Google Scholar 

  41. Baron F, Baker JE, Strob R, Goolely TA, Sandmaier BM, Maris MB et al. Kinetics of engraftment inpatients with hematologic malignancies given allogeneic hematopoietic cell transplantation after non-myeloablative conditioning. Blood 2004; 104: 2254–2262.

    Article  CAS  PubMed  Google Scholar 

  42. Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendation from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2001; 7: 473–485.

    Article  CAS  PubMed  Google Scholar 

  43. Childs R, Clave E, Contentin N, Jayasekera N, Hensel S, Leitman E et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 1999; 94: 3234–3241.

    CAS  PubMed  Google Scholar 

  44. Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthe S et al. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders: implications for timely detection of engraftment, graft failure and rejection. Leukemia 1999; 13: 2060–2069.

    Article  CAS  Google Scholar 

  45. Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T . How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant 2005; 35: 107–119.

    Article  CAS  PubMed  Google Scholar 

  46. Kristt D, Klein T . Reliability of quantitative chimerism results: assessment of sample performance using novel parameters. Leukemia 2006; 20: 1169–1172.

    Article  CAS  PubMed  Google Scholar 

  47. Kristt D, Israeli M, Klein T . Meeting the multi-challenges for quantitative chimerism testing: multi-donor and multi-lineage analysis after SCT. ASHI Q 2008; 32: 98–103.

    Google Scholar 

  48. Kristt D, Stein J, Yaniv I, Klein T . Interactive ChimerTrack software facilitates computation, visual displays and long-term tracking of chimeric status based on STRs. Leukemia 2004; 18: 909–911.

    Article  CAS  PubMed  Google Scholar 

  49. Tilanus MGJ . Short tandem repeat markers in diagnostics: what's in a repeat? Leukemia 2006; 20: 1353–1355.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was partially supported by a grant from the Gershon Meyerbaum Fund for Hematological Research, University of Tel Aviv. We thank Hagit Or for technical support, and Peggy Kristt for reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kristt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristt, D., Gesundheit, B., Stein, J. et al. Quantitative monitoring of multi-donor chimerism: a systematic, validated framework for routine analysis. Bone Marrow Transplant 45, 137–147 (2010). https://doi.org/10.1038/bmt.2009.120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.120

Keywords

This article is cited by

Search

Quick links