Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Reversal of vinblastine transport by chlorpromazine in membrane vesicles from multidrug-resistant human CCRF-CEM leukaemia cells

Abstract

The mechanism of action of 2-chlorpromazine (2-chloro-10-(3-dimethylaminopropyl)-phenothiazine) as a reversal agent for P-glycoprotein-mediated multidrug resistance was investigated using inside out-orientated membrane vesicles prepared from vinblastine-resistant human CCRF-CEM leukaemia cells (VBL1000). 2-Chlorpromazine (10 microM) completely inhibited ATP-dependent P-glycoprotein-mediated vinblastine accumulation in the vesicles. Whereas in the absence of added ligands VBL transport was described by a hyperbolic function of vinblastine concentration, in the presence of 2-chlorpromazine vinblastine transport was a sigmoidal function. 2-Chlorpromazine was shown previously [Syed SK, Christopherson RI and Roufogalis BD (1996) Biochem Mol Biol Int 39: 687-696] to be actively transported into vesicles from multidrug-resistant cells. Colchicine (10 microM) and phenoxybenzamine (10 microM) blocked vinblastine transport but had no effect on 2-chlorpromazine transport into vesicles. The results were consistent with a two-state concerted model in which P-glycoprotein exists in two conformational states, P(A) and P(B), where 2-chlorpromazine is transported by the conformer, P(A), and vinblastine by the conformer, P(B). In the presence of 2-chlorpromazine, the conformer P(A) predominates and vinblastine transport is inhibited. Addition of 2-chlorpromazine during the steady state of vinblastine accumulation blocked uptake and resulted in enhanced vinblastine efflux from the vesicles. The findings were similar when vinblastine was added at the steady state of 2-chlorpromazine transport. We propose a minimal kinetic model whereby in these preloaded vesicles the complex VV.P(A).CC is formed, where two internal binding sites of P-glycoprotein (P(A)) are occupied by vinblastine (V) and the two external sites are occupied by 2-chlorpromazine (C). When the two binding sites on both the inside and outside of P-glycoprotein are saturated with ligands vinblastine is effluxed at a very rapid rate, and vice versa when vesicles are preloaded with 2-chlorpromazine and vinblastine is added outside. These unexpected observations and the concerted model developed provide an alternative mechanism of action for reversal agents that sensitize multidrug-resistant cancer cells to anti-cancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syed, S., Christopherson, R. & Roufogalis, B. Reversal of vinblastine transport by chlorpromazine in membrane vesicles from multidrug-resistant human CCRF-CEM leukaemia cells. Br J Cancer 78, 321–327 (1998). https://doi.org/10.1038/bjc.1998.493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1998.493

Search

Quick links