Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Intratumour injection of immunoglobulins labelled with the α-particle emitter 211At: analyses of tumour retention, microdistribution and growth delay

Abstract

To determine the effects of 211At-labelled antibodies in solid tumour tissue, nude mice carrying OHS human osteosarcoma xenografts received intratumour injections at dosages of 1, 2 or 4 MBq (-1) tumour. The radioisotope was conjugated to either the osteosarcoma-specific monoclonal antibody TP-3 or the non-specific polyclonal antibody hlgGkappa. Tumour retention of injected radioimmunoconjugate (RIC), measured as the percentage of injected activity dosage per gram, was significantly higher for the [211At]TP-3 (203 +/- 93 at 24.1 h post injection) compared with the [211At]hlgGkappa (57 +/- 22 at 23.2 h post injection). The radioactive count rates in body (measured at neck and abdomen) were significantly lower with the TP-3 than with the hlgGkappa. Microautoradiography of the tumour radionuclide distribution was different for the two RICs, i.e. the [211At]TP-3 was to a larger extent concentrated near the injection site, whereas the [211At]hlgGkappa was more evenly distributed all over the tumour. The tumour growth was significantly delayed as a function of the injected activity dosage but without significant difference between the specific and the non-specific RIC. According to this study, it is possible to deliver highly selective radiation doses to solid tumours using intratumour injection of alpha-particle-emitting RICs. Improved tumour retention caused by antigen binding indicates that reduced normal tissue exposure can be obtained with antigen-specific antibodies. The heterogeneous tumour dose distribution observed is, however, a major impediment to the use of alpha-particle emitters against solid tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, R., Bruland, O. Intratumour injection of immunoglobulins labelled with the α-particle emitter 211At: analyses of tumour retention, microdistribution and growth delay. Br J Cancer 77, 1115–1122 (1998). https://doi.org/10.1038/bjc.1998.185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1998.185

This article is cited by

Search

Quick links