Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Oncology/Epidemiology
  • Published:

Clinical Oncology/Epidemiology

Mathematical modelling of tumour response in primary breast cancer

An Erratum to this article was published on 01 June 1998

An Erratum to this article was published on 01 July 1997

Abstract

Although breast cancer is perceived to be relatively chemosensitive, cytotoxic drug therapy only leads to cure in the adjuvant setting. In advanced disease, primary resistance and inadequate cell kill may be important in determining the lack of a durable response to cytotoxics, but for an individual patient's tumour there is no consistent way of determining the importance of these two factors. An adaptation of Skipper's log cell kill model of tumour response to chemotherapy was applied to serial tumour measurements of 46 locally advanced primary breast carcinomas undergoing neoadjuvant chemotherapy. Assuming a log-normal distribution of errors in the clinically measured volumes, the model produced, for each tumour separately, in vivo estimates of proportional cell kill, initial resistance and tumour doubling times during therapy. After 4 weeks' treatment, these data could then be used to predict subsequent tumour volumes with good accuracy. In addition, for the 13 tumours that became operable after the neoadjuvant chemotherapy, there was a significant association between the final volume as predicted by the model and the final pathological volume (P < 0.05). This approach could be usefully employed to determine those tumours that are primarily resistant to the treatment regimen, permitting changes of therapy to more effective drugs at a time when the tumour is clinically responding but destined to progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, D., Gregory, W., Bowman, A. et al. Mathematical modelling of tumour response in primary breast cancer. Br J Cancer 73, 1409–1416 (1996). https://doi.org/10.1038/bjc.1996.267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1996.267

This article is cited by

Search

Quick links