Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Combination therapy with cisplatin and nifedipine induces apoptosis in cisplatin-sensitive and cisplatin-resistant human glioblastoma cells

Abstract

We attempted to determine whether calcium channel blockers (CCBs) enhance the anti-tumour activity of cis-diamminedichloroplatinum (cisplatin) against both cisplatin-sensitive human glioblastoma U87 MG cells and cisplatin-resistant U87-MG-CR cells, the latter of which we developed for resistance to cisplatin. Nifedipine, a dihydropyridine class CCB, significantly enhanced the anti-tumour effect of cisplatin on these two cell types in vitro and in vivo. Our findings also indicated that, in the absence of normal extracellular Ca2+ nifedipine was capable of enhancing the cytotoxicity of cisplatin. In addition, this anti-tumour activity was partially inhibited by actinomycin D and cycloheximide, suggesting that it is possibly dependent upon new RNA and protein synthesis. Interestingly, ultrastructural analysis, DNA fragmentation assay and cell cycle analysis demonstrated that synergism between cisplatin and nifedipine results in apoptosis (programmed cell death) at a relatively low concentration of cisplatin, which when tested alone did not induce apoptosis. Furthermore, we demonstrated that nuclei from these cells lack a Ca(2+)-dependent endonuclease that degrade chromatin in the linker region between nucleosomes. In conclusion, our studies suggest that the non-cytotoxic agent nifedipine is able to synergistically enhance the anti-tumour effects of cisplatin on U87-MG and U87-MG-CR cells lacking a Ca(2+)-dependent endonuclease and subsequently to induce apoptosis via interaction of nifedipine with an as yet uncharacterised functional site other than a calcium channel on target cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, S., Yin, D., Morimura, T. et al. Combination therapy with cisplatin and nifedipine induces apoptosis in cisplatin-sensitive and cisplatin-resistant human glioblastoma cells. Br J Cancer 71, 282–289 (1995). https://doi.org/10.1038/bjc.1995.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1995.57

This article is cited by

Search

Quick links