Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

I-fibrinogen as an oncophilic radiodiagnostic agent: distribution kinetics in tumour-bearing mice

Abstract

Fibrinogen radioiodinated by the iodine monochloride method was tested as a tumour radiodiagnostic agent in mice. The I-fibrinogen cleared from the blood of tumour-bearing mice more rapidly than from that of normal mice, but it cleared from the whole body more slowly, suggesting it accumulated in a substantial tumour-related compartment in the abnormal mice. The tumour concentration steadily increased for 4 h after injection, at which time it reached a peak concentration of 11-4% of the injected dose/g. This concentration was higher than the peak concentration for Ga-citrate (not reached until 24 h) or any other oncophilic radiopharmaceutical tested in this tumour model. The early accumulation is consistent with the use of 123I as a tracer label for fibrinogen. A combination of the large tumour concentration of I-fibrinogen, an increased catabolic rate induced by chemical modification, and the exceptional nuclear properties of 123I for scintigraphic imaging, could lead to a very useful radiodiagnostic procedure for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krohn, K., DeNardo, S., Wheeler, D. et al. I-fibrinogen as an oncophilic radiodiagnostic agent: distribution kinetics in tumour-bearing mice. Br J Cancer 36, 227–234 (1977). https://doi.org/10.1038/bjc.1977.182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1977.182

Search

Quick links